Journal of Mathematics Teacher Education

, Volume 21, Issue 1, pp 63–94 | Cite as

Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative

  • Luis R. Pino-FanEmail author
  • Juan D. Godino
  • Vicenç Font


In recent years, there has been a growing interest in studying the knowledge that mathematics teachers require in order for their teaching to be effective. However, only a few studies have focused on the design and application of instruments that are capable of exploring different aspects of teachers’ didactic-mathematical knowledge about specific topics. This article reports the results obtained following the application of a questionnaire designed specifically to assess certain key features of prospective, higher secondary-education teachers’ knowledge of the derivative. The questionnaire was constructed using a theoretical model of mathematical knowledge for teaching based on the onto-semiotic approach to mathematical knowledge.


Teacher education Teachers’ knowledge Didactic-mathematical knowledge Epistemic facet Derivative 



This study has been performed in the framework of research projects FONDECYT Nº 11150014 (Funded by CONICYT, Chile), EDU2015-64646-P and EDU2012-31869, Ministry of Economy and Competitiveness (MINECO, Spain).


  1. Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399–431.CrossRefGoogle Scholar
  2. Badillo, E., Azcárate, C., & Font, V. (2011). Análisis de los niveles de comprensión de los objetos f’(a) y f′(x) en profesores de matemáticas [Analysing the extent to which mathematics teachers understand the objects f’(a) and f′(x)]. Enseñanza de las Ciencias, 29(2), 191–206.Google Scholar
  3. Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. Journal for Research in Mathematics Education, 31(5), 557–578.CrossRefGoogle Scholar
  4. Ball, D. L. (2000). Bridging practices: Intertwining content and pedagogy in teaching and learning to teach. Journal of Teacher Education, 51, 241–247.CrossRefGoogle Scholar
  5. Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners’ mathematical futures. In Paper presented at the 43rd Jahrestagung Für Didaktik Der Mathematik Held in Oldenburg, Germany.Google Scholar
  6. Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 433–456). Washington, DC: American Educational Research Association.Google Scholar
  7. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  8. Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481–497.CrossRefGoogle Scholar
  9. Bingolbali, E., & Monaghan, J. (2008). Concept image revisited. Educational Studies in Mathematics, 68(1), 19–35.CrossRefGoogle Scholar
  10. Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, NH: Heinemann.Google Scholar
  11. Çetin, N. (2009). The ability of students to comprehend the function-derivative relationship with regard to problems from their real life. PRIMUS, 19(3), 232–244.CrossRefGoogle Scholar
  12. Coll, C., & Sanchez, E. (2008). Presentación. El análisis de la interacción alumno-profesor: líneas de investigación [Presentation. The Analysis of the Pupil-Teacher Interaction: Researching Lines]. Revista de Educación, 346, 15–32.Google Scholar
  13. Delos Santos, A. (2006). An investigation of students’ understanding and representation of derivative in a graphic calculator-mediated teaching and learning environment. Doctoral thesis: University of Auckland, New Zealand.Google Scholar
  14. Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge and its impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 147–164). New York, NY, England: Macmillan Publishing Co.Google Scholar
  15. Font, V. (1999). Procediments per obtenir expressions simbòliques a partir de gràfiques. Aplicacions a la derivada [Procedures for obtaining symbolic expressions from graphs: Applications in relation to the derivative] (Unpublished doctoral thesis). Universitat de Barcelona, España.Google Scholar
  16. Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124. doi: 10.1007/s10649-012-9411-0.CrossRefGoogle Scholar
  17. García, M., Llinares, S., & Sánchez-Matamoros, G. (2011). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education, 9(5), 1023–1045.CrossRefGoogle Scholar
  18. Godino, J. D. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas [Categories of analysis of the mathematics teacher’s knowledge]. Unión, Revista Iberoamericana de Educación Matemática, 20, 13–31.Google Scholar
  19. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM The International Journal on Mathematics Education, 39(1), 127–135. doi: 10.1007/s11858-006-0004-1.CrossRefGoogle Scholar
  20. Grossman, P. (1990). The making of a teacher: Teacher knowledge and teacher education. New York and London: Teachers College Press.Google Scholar
  21. Habre, S., & Abboud, M. (2006). Students’ conceptual understanding of a function and its derivative in an experimental calculus course. Journal of Mathematical Behavior, 25, 52–72.CrossRefGoogle Scholar
  22. Hall, W. L. (2010). Student misconceptions of the language of calculus: Definite and indefinite integrals. In Paper presented at the 13th Annual Conference on Research in Undergraduate Mathematics Education, Raleigh, North Carolina.Google Scholar
  23. Hill, H. C., Ball, D. L., & Schlling, S. G. (2008). Unpacking pedagogical content knowledge of students. Journal for Research in Mathematics Education, 39, 372–400.Google Scholar
  24. Kiat, S. E. (2005). Analysis of students’ difficulties in solving integration problems. The Mathematics Educator, 9(1), 39–59.Google Scholar
  25. Llinares, S., & Krainer, K. (2006). Mathematics (student) teachers and teacher educators as learners. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 429–459). Rotterdam: Sense Publishers.Google Scholar
  26. Pino-Fan, L., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1429–1456. doi: 10.12973/eurasia.2015.1403a.Google Scholar
  27. Pino-Fan, L., & Godino, J. D. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del professor [An expanded view of teachers’ didactic–mathematical knowledge]. PARADIGMA, 36(1), 87–109.   Google Scholar
  28. Pino-Fan, L., Godino, J. D., & Font, V. (2011). Faceta epistémica del conocimiento didáctico-matemático sobre la derivada [Epistemic facet of didactic-mathematical knowledge of derivatives]. Educação Matemática Pesquisa, 13(1), 141–178.Google Scholar
  29. Pino-Fan, L., Godino, J. D., Font, V., & Castro, W. F. (2012). Key epistemic features of mathematical knowledge for teaching the derivative. In T. Y. Tso (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 297–304). Taipei, Taiwan: PME.Google Scholar
  30. Pino-Fan, L., Godino, J. D., Font, V., & Castro, W. F. (2013). Prospective teacher’s specialized content knowledge on derivative. In B. Ubuz, Ç. Haser, & M. Mariotti (Eds.), Proceedings of the Eighth Congress of European Research in Mathematics Education (pp. 3195–3205). Antalya, Turkey: CERME.Google Scholar
  31. Planas, N., & Iranzo, N. (2009). Consideraciones metodológicas para el análisis de procesos de interacción en el aula de matemáticas [Methodological considerations for interpretation of interactions in the mathematics classroom]. Revista Latinoamericana de Investigación en Matemática Educativa, 12(2), 179–213.Google Scholar
  32. Ponte, J. P., & Chapman, O. (2006). Mathematics teachers’ knowledge and practices. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 461–494). Rotterdam: Sense Publishers.Google Scholar
  33. Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255–281.CrossRefGoogle Scholar
  34. Rowland, T., & Ruthven, K. (Eds.). (2011). Mathematical knowledge in teaching, mathematics education Library 50. London: Springer.Google Scholar
  35. Sánchez–Matamoros, G., Fernández, C., Valls, J., García, M., & Llinares, S. (2012). Cómo estudiantes para profesor interpretan el pensamiento matemático de los estudiantes de bachillerato. La derivada de una función en un punto. En A. Estepa, Á. Contreras, J. Deulofeu, M.C. Penalva, F.J. García y L. Ordoñez (Eds.), Investigación en Educación Matemática XVI (pp. 497–508). Jaén: SEIEM.Google Scholar
  36. Schoenfeld, A., & Kilpatrick, J. (2008). Towards a theory of proficiency in teaching mathematics. In D. Tirosh & T. L. Wood (Eds.), Tools and processes in mathematics teacher education (pp. 321–354). Rotterdam: Sense Publishers.Google Scholar
  37. Schön, D. (1983). The reflective practitioner. New York: Basic Books.Google Scholar
  38. Schön, D. (1987). Educating the reflective practitioner. Toward a new design for teaching and learning in the professions. San Francisco: Jossey-Bass Publishers.Google Scholar
  39. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  40. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.CrossRefGoogle Scholar
  41. Silverman, J., & Thompson, P. W. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499–511.CrossRefGoogle Scholar
  42. Sowder, J. T. (2007). The mathematical education and development of teachers. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 157–223). Information Age Pub: Charlotte, NC.Google Scholar
  43. Sullivan, P. & Wood, T. (Eds.) (2008). The international handbook of mathematics teacher education. Volume 1: Knowledge and beliefs in mathematics teaching and teaching development. Rotterdam: Sense Publishers.Google Scholar
  44. Tsamir, P., Rasslan, S., & Dreyfus, T. (2006). Prospective teachers’ reactions to Right-or-Wrong tasks: The case of derivatives of absolute value functions. Journal of Mathematical Behavior, 25, 240–251.CrossRefGoogle Scholar
  45. Viholainen, A. (2008). Finnish mathematics teacher student’s informal and formal arguing skills in the case of derivative. Nordic Studies in Mathematics Education, 13(2), 71–92.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Luis R. Pino-Fan
    • 1
    Email author
  • Juan D. Godino
    • 2
  • Vicenç Font
    • 3
  1. 1.Universidad de Los LagosSantiagoChile
  2. 2.Universidad de GranadaGranadaSpain
  3. 3.Universitat de BarcelonaBarcelonaSpain

Personalised recommendations