Journal of Mathematics Teacher Education

, Volume 19, Issue 2–3, pp 261–276 | Cite as

New perspectives for didactical engineering: an example for the development of a resource for teaching decimal number system

  • Frédérick TempierEmail author


Many studies have shown the difficulties of learning and teaching the decimal number system for whole numbers. In the case of numbers bigger than one hundred, complexity is partly due to the multitude of possible relationships between units. This study was aimed to develop conditions of a resource which can help teachers to enhance their teaching of this concept, and learners to overcome some of its difficulties. “Didactical engineering for development” is a methodology that consists in cycles of conception of a resource and experiment with teachers, with a comparison of the a priori and a posteriori analysis. Overall choices for the design of the resource are described and the two main tasks designed with the support of a fundamental situation too. The type of collaboration between teachers and researchers evolves during the cycles of experiments in order to reach the conditions outside the research context. The analysis serve both to study how ordinary teachers appropriate the proposals made in the resource and to identify what is essential to disseminate to teachers. The results show how the situations can potentially help students to learn place value concepts, but they also indicate some resistance from the teachers when dealing with the decimal (base ten) principle of the numeration system. This is related to the influence of manipulative in teaching place value and to some characteristics of regular teaching practices. These results indicate the limitations of a resource in changing teachers’ practices, and they show that further teacher training about the decimal principle of the number system is needed.


Didactical engineering Resource Design Teachers Place value Manipulatives Whole numbers Primary school 


  1. Artigue M. (1990). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308. Grenoble: La Pensée Sauvage [English version available: Artigue M. (1992) Didactic engineering. In: R. Douady, A. Mercier (Ed.) Research in Didactique of Mathematics. Selected Papers (pp. 41–66). Grenoble: La Pensée Sauvage].Google Scholar
  2. Artigue, M. (2009). Didactical design in mathematics education. In C. Winslow (Ed.), Nordic research in mathematics education, proceedings from NORMA08 (pp. 7–16). Rotterdam: Sense Publishers.Google Scholar
  3. Artigue, M. (2011a). L’ingénierie didactique comme thème d’étude. In C. Margolinas, et al. (Eds.), En amont et en aval des ingénieries didactiques (pp. 15–25). Grenoble: La pensée sauvage.Google Scholar
  4. Artigue, M. (2011b). L’ingénierie didactique: un essai de synthèse. In C. Margolinas, et al. (Eds.), En amont et en aval des ingénieries didactiques (pp. 225–237). Grenoble: La pensée sauvage.Google Scholar
  5. Ball, D., & Cohen, D. (1996). Reform by the book: What is—or might be—the role of curriculum materials in teacher learning and instructional reform ? Educational Researcher, 25(9), 6–14.Google Scholar
  6. Bednarz, N., & Janvier, B. (1982). The understanding of numeration in primary school. Educational Studies in Mathematics, 13(1), 33–57.CrossRefGoogle Scholar
  7. Brissiaud, R. (2005). Comprendre la numération décimale: les deux formes de verbalisme qui donnent l’illusion de cette compréhension. Rééducation Orthophonique, 223, 225–238.Google Scholar
  8. Brousseau, G. (1995). Les mathématiques à l’école. Bulletin de l’APMEP, 400, 831–850.Google Scholar
  9. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, The Netherlands: Kluwer.Google Scholar
  10. Brousseau, G. (2008). Notes on the observation of classroom practices. ICME 11, Monterrey. Accessed 4 April 2015.
  11. Chambris, C. (2008). Relations entre les grandeurs et les nombres dans les mathématiques de l’école primaire. Évolution de l’enseignement au cours du 20e siècle. Connaissances des élèves actuels. Université Paris Diderot, Thesis.Google Scholar
  12. Chevallard, Y. (1991). La transposition didactique: du savoir savant au savoir enseigné. Grenoble: La pensée sauvage.Google Scholar
  13. Davis, E.-A., & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning. Educational Researcher, 24(3), 3–14.CrossRefGoogle Scholar
  14. DeBlois, L. (1996). Une analyse conceptuelle de la numération de position au primaire. Recherches En Didactique Des Mathématiques, 16(1), 71–128.Google Scholar
  15. Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8.CrossRefGoogle Scholar
  16. Fosnot, C. T., & Dolk, M. (2001). Young mathematicians at work: Constructing number sense, addition, and subtraction. Portsmouth, NH: Heineman.Google Scholar
  17. Fuson, K. C., Wearne, D., Hiebert, J., Human, P., Murray, H., Olivier, A., et al. (1997). Children’s conceptual structures for multidigit numbers and methods of multidigit addition and subtraction. Journal for Research in Mathematics Education, 28, 130–162.CrossRefGoogle Scholar
  18. Godino, J. D., Batanero, C., Contreras, A., Estepa, A., Lacasta, E. & Wilhelmi, M. (2013). Didactic engineering as design-based research in mathematics education. In Proceedings of the Eight Congress of the European Mathematical Society for Research in Mathematics Education. Antalya, Turkey.Google Scholar
  19. Houdement, C. & Chambris, C. (2013). Why and how to introduce numbers units in 1st ans 2nd grades. In B. Ubuz, C. Haser, M.A. Mariotti, Proceedings of the Eigth Congress of the European Mathematical Society for Research in Mathematics Education (pp. 313–322). Antalya, Turkey.Google Scholar
  20. Kamii, C., & Joseph, L. (1988). Teaching place value and double column addition. Arithmetic Teacher, 35(6), 48–52.Google Scholar
  21. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  22. Margolinas, C., Abboud-Blanchard, M., Bueno-Ravel, L., Douek, N., Fluckiger, A., Gibel, P., et al. (Eds.). (2011). En amont et en aval des ingénieries didactiques. Grenoble: La pensée sauvage.Google Scholar
  23. Margolinas, C. & Laparra, M. (2011). Des savoirs transparents dans le travail des professeurs à l’école primaire. In Rochex J-Y et Crinon J. (dir), La construction des inégalités scolaires. Au cœur des pratiques et des dispositifs d’enseignement (pp. 19–32). Rennes: Presses universitaires de Rennes.Google Scholar
  24. Margolinas, C., Mercier, A., & René de Cotret, S. (2007). Les développements curriculaires dans l’enseignement obligatoire. In L. Trouche, V. Durand-Guerrier, C. Margolinas, & A. Mercier (Eds.), Quelles ressources pour l’enseignement des mathématiques? Actes des journées mathématiques INRP (pp. 25–36). Lyon: INRP.Google Scholar
  25. Perrin-Glorian, M. J. (2011). L’ingénierie didactique à l’interface de la recherche avec l’enseignement. Développement de ressources et formation des enseignants. In C. Margolinas, et al. (Eds.), En amont et en aval des ingénieries didactiques (pp. 57–78). Grenoble: La pensée sauvage.Google Scholar
  26. Ross, S. (1989). Parts, wholes and place value: A developmental view. Arithmetic Teacher, 36(6), 47–51.Google Scholar
  27. Ruthven, K. (2002). Linking researching with teaching: Towards synergy of scholarly and craft knowledge. In L. English (Ed.), Handbook of International Research in Mathematics Education (pp. 581–598). Mahwah NJ: Lawrence Erlbaum.Google Scholar
  28. Salin M-H. & Greslard D. (1998). La collaboration entre chercheurs et enseignants dans un dispositif original d’observation de classes, et lors de la préparation d’une séquence de classe: Le Centre d’Observation et de Recherche sur l’Enseignement des Mathématiques (COREM). In F. Jacquet (Ed.), Proceedings of CIEAM 50, pp. 24–37.Google Scholar
  29. Shulman, Lee. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  30. Tempier, F. (2010). Une étude des programmes et manuels sur la numération décimale au CE2. Grand N, 86, 59–90.Google Scholar
  31. Tempier, F. (2013). La numération décimale de position à l’école primaire. Une ingénierie didactique pour le développement d’une ressource. Université Paris Diderot, Thesis. Accessed 4 April 2015.
  32. Thanheiser, E. (2009). Preservice elementary school teachers’ conceptions of Mutidigt whole numbers. Journal for Research in Mathematics Education, 40, 251–281.Google Scholar
  33. Thomas, N. (2004). The development of structure in the number system. In M. J. Hoines & A. B. Fuglestad (Eds.), 28th conference of the international group for the psychology of mathematics education (pp. 305–312). Bergen: Bergen University College Press.Google Scholar
  34. Thompson, I. & Bramald, R. (2002). An investigation of the relationship between young children’s understanding of the concept of place value and their competence at mental addition. Report for the Nuffield Foundation. Newcastle upon Tyne: University of Newcastle upon Tyne.Google Scholar
  35. Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2010). Elementary and middle school mathematics: Teaching developmentally (7th ed.). Boston, MA: Allyn & Bacon.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratoire de Didactique André RevuzUniversité de Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations