Skip to main content

How to develop mathematics-for-teaching and for understanding: the case of meanings of the equal sign


What kind of mathematical knowledge do prospective teachers need for teaching and for understanding student thinking? And how can its construction be enhanced? This article contributes to the ongoing discussion on mathematics-for-teaching by investigating the case of understanding students’ perspectives on equations and equalities and on meanings of the equal sign. It is shown that diagnostic competence comprises didactically sensitive mathematical knowledge, especially about different meanings of mathematical objects. The theoretical claims are substantiated by a report on a teacher education course, which draws on the analysis of student thinking as an opportunity to construct didactically sensitive mathematical knowledge for teaching for pre-service middle-school mathematics teachers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  • Bass, H., & Ball, D. L. (2004). A practice-based theory of mathematical knowledge for teaching: The case of mathematical reasoning. In W. Jianpan & X. Binyan (Eds.), Trends and challenges in mathematics education (pp. 107–123). Shanghai: East China Normal University Press.

    Google Scholar 

  • Baumert, J., et al. (2001). PISA 2000. Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske + Budrich.

    Google Scholar 

  • Cooney, T. J., & Wiegel, H. G. (2003). Examining the mathematics in mathematics teacher education. In A. J. Bishop, et al. (Eds.), Second international handbook of mathematics education (pp. 795–828). Dordrecht: Kluwer.

    Google Scholar 

  • Cortes, A., Vergnaud, G., & Kavafian, N. (1990). From arithmetic to algebra: Negotiating a jump in the learning process. In G. Booker et al. (Eds.), Proceedings of the 14th PME conference (Vol. 2, pp. 19–26). Mexico.

  • Cuoco, A. (2001). Mathematics for teaching. Notices of the AMS, 48(2), 169–174.

    Google Scholar 

  • Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, 61, 293–319.

    Article  Google Scholar 

  • Drijvers, P. (2003). Learning algebra in a computer algebra environment. Design research on the understanding of the concept of parameter. Dissertation. Utrecht, the Netherlands: CD-bèta press.

  • Even, R., & Tirosh, D. (2002). Teacher knowledge and understanding of students’ mathematical learning. In L. English, et al. (Eds.), Handbook of international research in mathematics education (pp. 219–240). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Filloy, E., Rojano, T., & Solares, A. (2003). Two meanings of the ‘equal’ sign and senses of comparison and substitution methods. In N. Pateman et al. (Eds.), Proceedings of the 27th conference of the international group for the psychology of mathematics education (Vol. 4, pp. 223–230). Honululu.

  • Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. Dordrecht: Reidel.

    Google Scholar 

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Reidel.

    Google Scholar 

  • Hefendehl-Hebeker, L. (2002a). Dialogisches Lernen in der Lehramtsausbildung. In S. Prediger, F. Siebel, & K. Lengnink (Eds.), Mathematik und Kommunikation (pp. 49–58). Mühltal: Verlag Allgemeine Wissenschaft.

    Google Scholar 

  • Hefendehl-Hebeker, L. (2002b). On aspects of didactically sensitive understanding of mathematics. In H. G. Weigand et al. (Eds.), Developments in mathematics education in German-speaking countries. Selected papers from the annual conference on didactics of mathematics. Bern 1999 (pp. 20–32). Hildesheim: Franzbecker.

  • Helmke, A., Hosenfeld, I., & Schrader, F.-W. (2003). Diagnosekompetenz in Ausbildung und Beruf entwickeln. Karlsruher Pädagogische Beiträge, 55, 15–34.

    Google Scholar 

  • Jungwirth, H., Steinbring, H., Voigt, J., & Wollring, B. (2001). Interpretative classroom research in teacher education. In H.-G. Weigand et al. (Eds.), Developments in mathematics education in Germany. Selected papers from the annual conference on didactics of mathematics. Regensburg 1996 (pp. 46–56). Hildesheim: Franzbecker. (orig. in German 1994)

  • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326.

    Article  Google Scholar 

  • Kieran, C. (2006). Research on the learning and teaching of algebra. A broadening of sources of meaning. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 11–49). Rotterdam: Sense Publisher.

    Google Scholar 

  • Kilpatrick, J., Hoyles, C., & Skovsmose, O. (2005). Meaning in mathematics education. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 36(4), 297–312.

    Article  Google Scholar 

  • Küchemann, D. (1981). Algebra. In K. Hart (Ed.), Children’s understanding of mathematics: 11–16 (pp. 102–119). London: John Murray.

    Google Scholar 

  • Leufer, N., & Prediger, S. (2007). „Vielleicht brauchen wir das ja doch in der Schule” Sinnstiftung und Brückenschläge in der Analysis als Bausteine zur Weiterentwicklung der fachinhaltlichen gymnasialen Lehrerbildung. In A. Büchter, et al. (Eds.), Realitätsnaher Mathematikunterricht—vom Fach aus und für die Praxis (pp. 265–276). Hildesheim: Franzbecker.

    Google Scholar 

  • Malle, G. (1993). Didaktische Probleme der elementaren Algebra. Wiesbaden: Vieweg.

    Google Scholar 

  • McNeil, N. M., Grandau, L., Knuth, E. J., Alibali, M. W., Stephens, A. S., Hattikudur, S., et al. (2006). Middle-school students’ understanding of the equal sign: The books they read can’t help. Cognition and Instruction, 24(3), 367–385.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics. (2000). NCTM Standards 2000: Principles and standards for school mathematics. Reston. (online under

  • Peter-Koop, A. (2001). From “teachers researchers” to “student teacher researchers”: Diagnostically enriched didactics. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 72–79). Utrecht: Freudenthal Institute.

  • Prediger, S. (2008). The relevance of didactic categories for analysing obstacles in conceptual change: Revisiting the case of multiplication of fractions. Learning and Instruction, 18(1), 3–17.

    Article  Google Scholar 

  • Scherer, P., & Steinbring, H. (2006). Noticing children’s learning processes—teachers jointly reflect on their own classroom interaction for improving mathematics teaching. Journal of Mathematics Teacher Education, 9(2), 157–185.

    Google Scholar 

  • Schifter, D. (1998). Learning mathematics for teaching: From a teachers’ seminar to the classroom. Journal for Mathematics Teacher Education, 1(1), 55–87.

    Article  Google Scholar 

  • Selter, C. (2001). Understanding—the underlying goal of teacher education. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th annual conference of PME (Vol. 1, pp. 198–202). Utrecht: Freudenthal Institute.

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.

    Google Scholar 

  • Siebel, F. (2005). Elementare Algebra und ihre Fachsprache. Eine allgemein-mathematische Untersuchung. Mühltal: Verlag Allgemeine Wissenschaft.

    Google Scholar 

  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163.

    Article  Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.

    Article  Google Scholar 

  • Theis, L. (2005). L’apprentissage du signe = : Un obstacle cognitif important. For the Learning of Mathematics, 25(3), 7–12.

    Google Scholar 

  • Tirosh, D., & Stavy, R. (1999). Intuitive rules: A way to explain and predict students’ reasoning. Educational Studies in Mathematics, 38(1–3), 51–66.

    Article  Google Scholar 

  • Tsamir, P. (2005). Enhancing prospective teachers’ knowledge of learners’ intuitive conceptions: The case of same A–same B. Journal of Mathematics Teacher Education, 8(6), 469–497.

    Article  Google Scholar 

  • Weinert, F. E. (2000). Lehren und Lernen für die Zukunft—Ansprüche an das Lernen in der Schule. Pädagogische Nachrichten Rheinland-Pfalz 2.

  • Winter, H. (1982). Das Gleichheitszeichen im Mathematikunterricht der Grundschule. Mathematica Didactica, 5, 185–211.

    Google Scholar 

  • Wittmann, E. Ch. (2001). The alpha and omega of teacher education: Stimulating mathematical activities. In D. Holton (Ed.), Teaching and learning at university level. An ICMI study (pp. 539–552). Dordrecht: Kluwer.

    Google Scholar 

  • Wollring, B., et al. (2003). Empfehlungen zur Aktualisierung der Lehrerbildung in Hessen. Bericht der Expertengruppe Lehrerbildung. Wiesbaden: Hessisches Kultusministerium und Ministerium für Wissenschaft und Kunst.

    Google Scholar 

  • Wolters, M. A. (1991). The equal sign goes both ways. How mathematics instruction leads to the development of a common misconception. In F. Furinghetti (Ed.), Proceedings of the 15th PME conference (Vol. 3, pp. 348–355). Genoa.

Download references


The author would like to thank the reviewers for their constructive criticism and comments, and his Ph.D. student Katja Schreiber for the excerpt of her transcript of Episode 2.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Susanne Prediger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prediger, S. How to develop mathematics-for-teaching and for understanding: the case of meanings of the equal sign. J Math Teacher Educ 13, 73–93 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Teacher education
  • Mathematics-for-teaching
  • Diagnostic competence
  • Meaning
  • Algebra
  • Equal sign
  • Variables