Skip to main content
Log in

β-cyclodextrin coating: improving biocompatibility of magnetic nanocomposites for biomedical applications

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Cite this article

Abstract

The role Beta-cyclodextrin (βCD) on improving biocompatibility on healthy cellular and animal models was studied upon a formulation obtained from the development of a simple coating procedure. The obtained nanosystems were thoroughly characterized by FTIR, TGA, atomic absorption spectroscopy, dynamic light scattering and zeta potential, TEM/HR-TEM and magnetic properties. βCD might interact with the magnetic core through hosting OA. It is feasible that the nanocomposite is formed by nanoparticles of MG@OA dispersed in a βCD matrix. The evaluation of βCD role on biocompatibility was performed on two healthy models. To this end, in vivo studies were carried out on Caenorhabditis elegans. Locomotion and progeny were evaluated after exposure animals to MG, MG@OA, and MG@OA-βCD (10 to 500 µg/mL). The influence of βCD on cytotoxicity was explored in vitro on healthy rat aortic endothelial cells, avoiding alteration in the results derived from the use of transformed cell lines. Biological studies demonstrated that βCD attaching improves MG biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

References

  1. Mehta RV. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C. 2017;79:901–16.

    Article  CAS  Google Scholar 

  2. Bakhtiary Z, Saei A, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomedicine. 2016;12:287–307.

    Article  CAS  Google Scholar 

  3. Das P, Colombo M, Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B. 2018;174:42–55.

    Article  Google Scholar 

  4. Schneider MGM, Martin MJ, Coral D, Muraca D, Gentili C, van Raap MF, et al. Selective contrast agents with potential to the earlier detection of tumors: Insights on synthetic pathways, physicochemical properties and performance in MRI assays. Colloids Surf B. 2018;170:470–8.

    Article  Google Scholar 

  5. Kainz QM, Reiser O. Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc Chem Res. 2014;47:667–77.

    Article  CAS  Google Scholar 

  6. Badruddoza AZM, Rahman MT, Ghosh S, Hossain MZ, Shi J, Hidajat K, et al. β-Cyclodextrin conjugated magnetic, fluorescent silica core-shell nanoparticles for biomedical applications. Carbohydr Polym. 2013;95:449–57.

    Article  CAS  Google Scholar 

  7. Tarasi R, Khoobi M, Niknejad H, Ramazani A, Ma’Mani L, Bahadorikhalili S, et al. β-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: a novel biocompatible nanocomposite for targeted docetaxel delivery. J Magn Magn Mater. 2016;417:451–9.

    Article  CAS  Google Scholar 

  8. Monteiro APF, Caminhas LD, Ardisson JD, Paniago R, Cortés ME. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr Polym. 2017;163:1–9.

    Article  CAS  Google Scholar 

  9. Oroujeni M, Kaboudin B, Xia W, Jönsson P, Ossipov D. Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery. Prog Org Coat. 2018;114:154–61.

    Article  CAS  Google Scholar 

  10. Zhou Y, Sun L, Wang H, Liang W, Yang J, Wang L. Investigation on the uptake and release ability of β-cyclodextrin functionalized Fe3O4 magnetic nanoparticles by methylene blue. Mater Chem Phys. 2016;170:83–89.

    Article  CAS  Google Scholar 

  11. Santos ECS, Watanabe A, Vargas MD, Tanaka MN, Garcia F, Ronconi CM. AMF-responsive doxorubicin loaded β-cyclodextrin-decorated superparamagnetic nanoparticles. N J Chem. 2018;42:671–80.

    Article  CAS  Google Scholar 

  12. Tarasi R, Khoobi M, Niknejad H, Ramazani A, Ma’Mani L, Bahadorikhalili S, et al. Beta-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: a novel biocompatible nanocomposite for targeted docetaxel delivery. J Magn Magn Mater. 2016;417:451–9.

    Article  CAS  Google Scholar 

  13. Hunt PR. The C. elegans model in toxicity testing. Appl Toxicol. 2017;37:50–59.

    Article  CAS  Google Scholar 

  14. Xiong H, Pears C, Woollard A. An enhanced C. elegans based platform for toxicity assessment. Sci Rep. 2017;7:1–11.

    Article  Google Scholar 

  15. Gonzalez-Moragas L, Yu SM, Carenza E, Laromaine A, Roig A. Protective effects of bovine serum albumin on superparamagnetic iron oxide nanoparticles evaluated in the nematode caenorhabditis elegans. ACS Biomater Sci Eng. 2015;1:1129–38.

    Article  CAS  Google Scholar 

  16. Gonzalez-Moragas L, Berto P, Vilches C, Quidant R, Kolovou A, Santarella-Mellwig R, et al. In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomater. 2017;53:598–609.

    Article  CAS  Google Scholar 

  17. Rayes D, Hernando G, Flamini M, Bouzat C. Caenorhabditis elegans muscle Cys-loop receptors as novel targets of terpenoids with potential anthelmintic activity. Mol Pharmacol. 2007;71:1407–15.

    Article  CAS  Google Scholar 

  18. Stiernagle T. Maintenance of C. elegans, WormBook. New York, United States: Oxford University Press Inc.; 2006.

  19. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed; Santiago, Chile: Ediciones Universidad Católica de Chile; 2011.

  20. Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14:21266–305.

    Article  CAS  Google Scholar 

  21. Buckingham SD, Sattelle DB. Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci. 2009;10:1–6.

    Article  Google Scholar 

  22. Laura MD, Herndon A, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature. 2002;419:808–14.

    Article  Google Scholar 

  23. De Almeida Fagundez D, Freitas Câmara D, Goulart Salgueiro W, Noremberg S, Puntel RL, Escobar Piccoli J, et al. Behavioral and dopaminergic damage induced by acute iron toxicity in Caenorhabditis elegans. Toxicol Res. 2015;4:878–84.

    Article  Google Scholar 

  24. Mahoney TR, Luo S, Nonet ML. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc. 2006;1:1772–7.

    Article  CAS  Google Scholar 

  25. Zhang L, He R, Gu HC. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci. 2006;253:2611–7.

    Article  CAS  Google Scholar 

  26. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Complexes, Part B. New York: John Wiley and Sons Inc; 1997.

  27. Vidal-Vidal J, Rivas J, López-Quintela Ma. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Coll Surf A Physicochem Eng Asp. 2006;288:44–51.

    Article  CAS  Google Scholar 

  28. Sambasevam KP, Mohamad S, Sarih NM, Ismail NA. Synthesis and characterization of the inclusion complex of β-cyclodextrin and Azomethine. Int J Mol Sci. 2013;14:3671–82.

    Article  CAS  Google Scholar 

  29. Salustio PJ, Feio G, Figueirinhas JL, Pinto JF, Marques HMC. The influence of the preparation methods on the inclusion of model drugs in a beta-cyclodextrin cavity. Eur J Pharm Biopharm. 2009;71:377–86.

    Article  CAS  Google Scholar 

  30. Kuo CH, Liu YC, Chang CMJ, Chen JH, Chang C, Shieh CJ. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym. 2012;87:2538–45.

    Article  CAS  Google Scholar 

  31. Kaiser R, Miskolczy G. Magnetic properties of stable dispersions of subdomain magnetite particles. J Appl Phys. 1970;41:1064–72.

    Article  CAS  Google Scholar 

  32. Nicolás P, Saleta M, Troiani H, Zysler R, Lassalle V, Ferreira ML. Preparation of iron oxide nanoparticles stabilized with biomolecules: experimental and mechanistic issues. Acta Biomater. 2013;9:4754–62.

    Article  Google Scholar 

  33. Anderson GL, Cole RD, Williams PL. Assessing behavioral toxicity with Caenorhabditis elegans. Environ Toxicol Chem. 2004;23:1235–40.

    Article  CAS  Google Scholar 

  34. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  35. Sandoval JM, Levêque P, Gallez B, Vásquez CC, Buc Calderon P. Tellurite-induced oxidative stress leads to cell death of murine hepatocarcinoma cells. Biometals. 2010;23(4):623–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr Diego Rayes for his kind support during the assays on C. elegans. This work was supported by “Consejo Nacional de Investigaciones Científicas y Técnicas” (CONICET) and “Universidad Nacional del Sur” (UNS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariela Agotegaray or María José De Rosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agotegaray, M., Blanco, M.G., Campelo, A. et al. β-cyclodextrin coating: improving biocompatibility of magnetic nanocomposites for biomedical applications. J Mater Sci: Mater Med 31, 22 (2020). https://doi.org/10.1007/s10856-020-6361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-6361-4

Navigation