Skip to main content

Advertisement

Log in

Evaluation of degree of conversion, rate of cure, microhardness, depth of cure, and contraction stress of new nanohybrid composites containing pre-polymerized spherical filler

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of the present study was to characterize nanohybrid and nanofilled composites in terms of degree of conversion (DC), rate of cure (RC), microhardness (Vickers hardness number; VHN), depth of cure, and contraction stress (CS). Ceram.X® universal- A3, duo enamel E2, and duo dentin D3 composites were compared to Tetric EvoCeram® and FiltekTMSupreme XTE composites of equivalent dentin and enamel shades under a 40 s photopolymerization protocol. DC was measured by infrared spectroscopy, calculating RC from the kinetic curve. Top and bottom VHN were determined using a Vickers indenter, and bottom/top surface ratio (Vickers hardness ratio; VHR) calculated. CS vs. time was assessed by a universal testing machine and normalized for the specimen bonding area. All materials showed DC  < 60%, Ceram.X® composites reaching higher values than the other composites of corresponding shades. RC at 5 s of photopolymerization was always higher than that at 10 s. All the Ceram.X® composites and the lighter-shaded Tetric EvoCeram® and FiltekTMSupreme XTE composites reached the RC plateau after 25 s, the remaining materials showed a slower kinetic trend. Tetric EvoCeram® and FiltekTMSupreme XTE composites displayed the softest and the hardest surfaces, respectively. Differently from darker-shaded materials, the universal and the three enamel-shaded composites resulted optimally cured (VHR >  80%). The tested composites differed in CS both during and after light cure, Tetric EvoCeram® and FiltekTMSupreme XTE composites displaying the highest and the lowest CS, respectively. Only the Ceram.X® universal-A3 reached a CS plateau value. The tested composites exhibited material-dependent chemo-mechanical properties. Increasing the curing time and/or reducing the composite layer thickness for dentin-shaded composites appears advisable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sadowsky SJ. An overview of treatment considerations for esthetic restorations: a review of the literature. J Prosthet Dent. 2006;96:433–42.

    Google Scholar 

  2. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90:402–16.

    CAS  Google Scholar 

  3. Pratap B, Gupta RK, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. Jpn Dent Sci Rev. 2019;55:126–38.

    Google Scholar 

  4. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002;87:642–9.

    CAS  Google Scholar 

  5. Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32:1586–99.

    CAS  Google Scholar 

  6. Heymann H, Sturdevant CM. Sturdevant’s art and science of operative dentistry. St. Louis, Mo: Elsevier/Mosby; 2013.

    Google Scholar 

  7. Kundie F, Azhari CH, Muchtar A, Ahmad ZA. Effects of filler size on the mechanical properties of polymer-filled dental composites: a review of recent developments. J Phys Sci. 2018;29:141–65.

    CAS  Google Scholar 

  8. Ferracane JL. Resin composite-state of the art. Dent Mater. 2011;27:29–38.

    CAS  Google Scholar 

  9. Loguercio AD, Lorini E, Weiss RV, Tori AP, Picinatto CC, Ribeiro NR, et al. A 12-month clinical evaluation of composite resins in class III restorations. J Adhes Dent. 2007;9:57–64.

    CAS  Google Scholar 

  10. Angerame D, De Biasi M. Do nanofilled/nanohybrid composites allow for better clinical performance of direct restorations than traditional microhybrid composites? A systematic review. Oper Dent. 2018;43:E191–209.

    CAS  Google Scholar 

  11. Blackham JT, Vandewalle KS, Lien W. Properties of hybrid resin composite systems containing prepolymerized filler particles. Oper Dent. 2009;34:697–702.

    Google Scholar 

  12. Thome T, Steagall W Jr., Tachibana A, Braga SR, Turbino ML. Influence of the distance of the curing light source and composite shade on hardness of two composites. J Appl Oral Sci. 2007;15:486–91.

    CAS  Google Scholar 

  13. Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I. Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent. 2008;33:408–12.

    Google Scholar 

  14. Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J Conserv Dent. 2012;15:237–41.

    CAS  Google Scholar 

  15. Schneider LF, Pfeifer CS, Consani S, Prahl SA, Ferracane JL. Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater. 2008;24:1169–77.

    CAS  Google Scholar 

  16. Rueggeberg FA, Caughman WF, Curtis JW Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent. 1994;19:26–32.

    CAS  Google Scholar 

  17. Al-Hiyasat AS, Darmani H, Milhem MM. Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Investig. 2005;9:21–5.

    CAS  Google Scholar 

  18. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater. 2000;16:292–6.

    CAS  Google Scholar 

  19. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23:1819–29.

    CAS  Google Scholar 

  20. Ribeiro BC, Boaventura JM, Brito-Goncalves J, Rastelli AN, Bagnato VS, Saad JR. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs. J Appl Oral Sci. 2012;20:212–7.

    CAS  Google Scholar 

  21. Catelan A, Mainardi Mdo C, Soares GP, de Lima AF, Ambrosano GM, Lima DA, et al. Effect of light curing protocol on degree of conversion of composites. Acta Odontol Scand. 2014;72:898–902.

    Google Scholar 

  22. El-Nawawy M, Koraitim L, Abouelatta O, Hegazi H. Depth of cure and microhardness of nanofilled, packable and hybrid dental composite resins. Am J Biomed Eng. 2012;2:241–50.

    Google Scholar 

  23. Ferracane JL, Aday P, Matsumoto H, Marker VA. Relationship between shade and depth of cure for light-activated dental composite resins. Dent Mater. 1986;2:80–4.

    CAS  Google Scholar 

  24. Davidson-Kaban SS, Davidson CL, Feilzer AJ, de Gee AJ, Erdilek N. The effect of curing light variations on bulk curing and wall-to-wall quality of two types and various shades of resin composites. Dent Mater. 1997;13:344–52.

    CAS  Google Scholar 

  25. Leloup G, Holvoet PE, Bebelman S, Devaux J. Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil. 2002;29:510–5.

    CAS  Google Scholar 

  26. ISO 4049:2019 (5.) Dentistry—polymer-based filling, restorative and luting materials; 7.10 depth of cure, Class 2 materials excluding luting materials. International Organization for Standardization Geneva, Switzerland (2019).

  27. Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater. 2012;28:521–8.

    CAS  Google Scholar 

  28. Abed YA, Sabry HA, Alrobeigy NA. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J. 2015;12:71–80.

    Google Scholar 

  29. Mandikos MN, McGivney GP, Davis E, Bush PJ, Carter JM. A comparison of the wear resistance and hardness of indirect composite resins. J Prosthet Dent. 2001;85:386–95.

    CAS  Google Scholar 

  30. Braga RR, Ferracane JL. Contraction stress related to degree of conversion and reaction kinetics. J Dent Res. 2002;81:114–8.

    CAS  Google Scholar 

  31. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21:962–70.

    CAS  Google Scholar 

  32. Yu P, Yap A, Wang XY. Degree of conversion and polymerization shrinkage of bulk-fill resin-based composites. Oper Dent. 2017;42:82–9.

    CAS  Google Scholar 

  33. Ferracane JL, Hilton TJ. Polymerization stress-is it clinically meaningful? Dent Mater. 2016;32:1–10.

    CAS  Google Scholar 

  34. Gajewski V, Pfeifer C, Fróes-Salgado N, Boaro L, Braga R. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J. 2012;23:508–14.

    Google Scholar 

  35. Van Landuyt KL, Snauweart J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28:3757–85.

    Google Scholar 

  36. AlShaafi M. Factors affecting polymerization of resin-based composite: a literature review. Saudi Dent J. 2017;29:48–58.

    Google Scholar 

  37. Fontes A, Di Mauro E, Dall’Antonia L, Sano W. Study of the influence of pigments in the polymerization and mechanical performance of commercial dental composites. Rev Odontol Bras Cent. 2012;21:468–72.

    Google Scholar 

  38. Mahn E. Clinical criteria for the successful curing of composite materials. Rev Clin Periodoncia Implantol Rehabil Oral. 2013;6:148–53.

    Google Scholar 

  39. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res. 2000;53:353–61.

    CAS  Google Scholar 

  40. Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand. 1982;40:179–92.

    CAS  Google Scholar 

  41. Okte Z, Villalta P, Garcia-Godoy F, Garcia-Godoy F Jr., Murray P. Effect of curing time and light curing systems on the surface hardness of compomers. Oper Dent. 2005;30:540–5.

    Google Scholar 

  42. Bouschlicher M, Rueggeberg F, Wilson B. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent. 2004;29:698–704.

    Google Scholar 

  43. Habib E, Wang R, Wang Y, Zhu M, Zhu X. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng. 2016;2:1–11.

    CAS  Google Scholar 

  44. Tagtekin D, Yanikoglu F, Bozkurt F, Kologlu B, Sur H. Selected characteristics of an Ormocer and a conventional hybrid resin composite. Dent Mater. 2004;20:487–97.

    CAS  Google Scholar 

  45. Poggio C, Viola M, Mirando M, Chiesa M, Beltrami R, Colomo M. Microhardness af different esthetic restorative materials: evaluation and comparison after exposure to acidic drink. Dent Res J. 2018;15:166–72.

    Google Scholar 

  46. Lu H, Lee Y, Oguri M, JM P. Properties of a dental resin composite with a spherical inorganic filler. Oper Dent. 2006;31:734–40.

    Google Scholar 

  47. Shah P, Stansbury J. Role of filler and functional group conversion in the evolution of properties in polymeric dental restoratives. Dent Mater. 2014;30:586–93.

    CAS  Google Scholar 

  48. Satterthwaite J, Maisuria A, Vogel K, Watts D. Effect of resin-composite filler particle size and shape on shrinkage-stress. Dent Mater. 2012;28:609–14.

    CAS  Google Scholar 

  49. Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater. 2005;21:1150–7.

    CAS  Google Scholar 

  50. Lu H, Stansbury JW, Bowman CN. Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dent Mater. 2004;20:979–86.

    CAS  Google Scholar 

  51. Goncalves F, Kawano Y, Braga RR. Contraction stress related to composite inorganic content. Dent Mater. 2010;26:704–9.

    CAS  Google Scholar 

  52. Marchesi G, Breschi L, Antoniolli F, Di Lenarda R, Ferracane J, Cadenaro M. Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dent Mater. 2010;26:947–53.

    CAS  Google Scholar 

  53. Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, et al. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater. 2015;31:1542–51.

    CAS  Google Scholar 

  54. Kannurpatti AR, Anderson KJ, Anseth JW, Bowman CN. Use of “living” radical polymerizations to study the structural evolution and properties of highly crosslinked polymer networks. J Polym Sci B Polym Phys. 1997;35:2297–307.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laser Laboratory of Elettra Sincrotrone Trieste (Trieste, Italy) for the curing lights’ output and maximum emitted wavelength measurement. The authors declare that they do not have any financial interest in the companies whose materials are included in this article.

Funding

The study was self-funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Angerame.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanfoni, L., De Biasi, M., Antollovich, G. et al. Evaluation of degree of conversion, rate of cure, microhardness, depth of cure, and contraction stress of new nanohybrid composites containing pre-polymerized spherical filler. J Mater Sci: Mater Med 31, 127 (2020). https://doi.org/10.1007/s10856-020-06464-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06464-9

Navigation