Skip to main content

3D printing of an integrated triphasic MBG-alginate scaffold with enhanced interface bonding for hard tissue applications

Abstract

Osteochondral defects affect both of cartilage and subchondral areas, thus it poses a significant challenge to simultaneously regenerate two parts in orthopedics. Tissue engineering strategy is currently regarded as the most promising way to repair osteochondral defects. This study focuses on developing a multilayered scaffold with enhanced interface bonding through 3D printing. One-shot printing process enables control over material composition, pore structure, and size in each region of the scaffold, while realizes seamlessly integrated construct as well. The scaffold was designed to be triphasic: a porous bone layer composed of alginate sodium (SA) and mesoporous bioactive glasses (MBG), an intermediate dense layer also composed of SA and MBG and a cartilaginous layer composed of SA. The mechanical strength including the interface adhesion strength between layers were characterized. The results indicated that SA crosslinking after 3D printing anchored different materials together and integrated all regions. Additional scaffold soaking in simulated body fluid (SBF) and cell culture medium induced apatite deposition and had weakened the compressive and tensile strengths, while no layer dislocation or delamination occurred.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Hunziker EB. Articular cartilage repair: basic science and clinical progress, a review of the current status and prospects. Osteoarthr Cartil. 2002;10:432–63.

    Article  CAS  Google Scholar 

  2. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2010;27:1347–52.

    Article  Google Scholar 

  3. Cole BJ, Busam M. Surgical management of articular cartilage defects in the knee. J Bone Jt Surg Am. 2009;91:1778–90.

    Google Scholar 

  4. Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP. A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater. 2014;10:1996–2004.

    Article  CAS  Google Scholar 

  5. Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37:1–57.

    Article  Google Scholar 

  6. Tamaddon M, Wang L, Liu Z, Liu C. Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering. Bio-Des Manuf. 2018;1:101–14.

    Article  CAS  Google Scholar 

  7. Jia S, Wang J, Zhang T, Pan W, Li Z, He X. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl Mater Inter. 2018;10:20296–305.

    Article  CAS  Google Scholar 

  8. Longley R, Ferreira AM, Gentile P. Recent approaches to the manufacturing of biomimetic multi-phasic scaffolds for osteochondral regeneration. Int J Mol Sci. 2018;19:1755.

    Article  Google Scholar 

  9. Holmes B, Zhu W, Li J, Lee JD, Zhang LG. Development of novel three-dimensional printed scaffolds for osteochondral regeneration. Tissue Eng Part A. 2015;21:403–15.

    Article  CAS  Google Scholar 

  10. Kang H, Zeng YZ, Varghese S. Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering. Acta Biomater. 2018;78:365–77.

    Article  CAS  Google Scholar 

  11. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  Google Scholar 

  12. Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31:706–21.

    Article  CAS  Google Scholar 

  13. Levingstone TJ, Ramesh A, Brady RT, Brama PAJ, Kearney C, Gleeson JP. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials. 2016;87:69–81.

    Article  CAS  Google Scholar 

  14. H Da, S Jia, G Meng, J Cheng, W Zhou, Z Xiong. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. Plos One. 2013;8. https://doi.org/10.1371/journal.pone.0054838.

  15. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater. 2003;5:29–39.

    Article  CAS  Google Scholar 

  16. Klein TJ, Malda J, Sah RL, Hutmacher DW. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B. 2009;15:143–57.

    Article  CAS  Google Scholar 

  17. Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ. Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A. 2010;92:1078–93.

    Google Scholar 

  18. Chen GP, Tanaka J, Tateishi T. Osteochondral tissue engineering using a PLGA-collagen hybrid mesh. Mat Sci Eng C-Bio S. 2006;26:124–9.

    Article  Google Scholar 

  19. Huang T, Fan C, Zhu M, Zhu Y, Zhang W, Li L. 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Appl Surf Sci. 2019;467:345–53.

    Article  Google Scholar 

  20. Li L, Hu H, Zhu Y, Zhu M, Liu Z. 3D-printed ternary SiO2-CaO-P2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration. Ceram Int. 2019;45:10997–1005.

    Article  CAS  Google Scholar 

  21. Du X, Fu S, Zhu Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B. 2018;6:4397–412.

    Article  CAS  Google Scholar 

  22. Moxon SR, Cooke ME, Cox SC, Snow M, Jeys L, Jones SW, Smith AM, Grover LM. Suspended manufacture of biological structures. Adv Mater. 2017;29:1605594.

    Article  Google Scholar 

  23. Rotbaum Y, Puiu C, Rittel MD. Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures. Mater Sci Eng. 2019;96:176–82.

    Article  CAS  Google Scholar 

  24. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti L, Grigolo B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C. 2017;78:1246–62.

    Article  CAS  Google Scholar 

  25. Zhao S, Zhang J, Zhu M, et al. Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. J Mater Chem B. 2014;3:1612–23.

    Article  Google Scholar 

  26. Zhao F, Zhang W, Fu X, Xie W, Chen X. Fabrication and characterization of bioactive glass/alginate composite scaffolds by a self-crosslinking processing for bone regeneration. RSC Adv. 2016;6:91201–8.

    Article  CAS  Google Scholar 

  27. Castro NJ, O’Brien J, Zhang L. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale. 2015;7:14010–22.

    Article  CAS  Google Scholar 

  28. Shim JH, Jang KM, Hahn SK, Park JY, Jung H, Oh K. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016;8:014102.

    Article  Google Scholar 

  29. Gao F, Xu Z, Liang Q, Liu B, Li H, Wu Y. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater. 2018;28:1706644.

    Article  Google Scholar 

  30. Domingos M, Chiellini F, Gloria A, Ambrosio L, Bartolo PJ, Chiellini E. BioExtruder: study of the influence of process parameters on PCL scaffolds properties. In: Bartolo PJ, (ed.). Innovative developments in design and manufacturing—advanced research in virtual and rapid prototyping. Oxford: Taylor & Francis; 2009. p. 67–73.

    Google Scholar 

  31. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–33.

    Article  CAS  Google Scholar 

  32. Stagnaro P, Schizzi I, Utzeri R, Marsano E, Castellano M. Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration. Carbohyd Polym. 2018;185:56–62.

    Article  CAS  Google Scholar 

  33. Zhu M, Zhang J, Zhao S, Zhu Y. Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair. J Mater Sci. 2016;51:836–44.

    Article  CAS  Google Scholar 

  34. Cai L, Lin D, Chai Y, Yuan Y, Liu C. MBG scaffolds containing chitosan microspheres for binary delivery of IL-8 and BMP-2 for bone regeneration. J Mater Chem B. 2018;6:4453–65.

    Article  CAS  Google Scholar 

  35. Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed. 2004;43:5980–4.

    Article  CAS  Google Scholar 

  36. Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech. 2007;40:750–65.

    Article  Google Scholar 

  37. Ramaswamy Y, Wu C, Zhou H, Zreiqat H. Biological response of human bone cells to zinc-modified Ca-Si-based ceramics. Acta Biomater. 2008;4:1487–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support a grant from the Shanghai Natural Science Foundation (No.19ZR1435100) and National Natural Science Foundation of China (No.51673212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhu or Zhongtang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., He, X., Xin, C. et al. 3D printing of an integrated triphasic MBG-alginate scaffold with enhanced interface bonding for hard tissue applications. J Mater Sci: Mater Med 31, 113 (2020). https://doi.org/10.1007/s10856-020-06459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06459-6