Skip to main content
Log in

Differences in osteogenic induction of human mesenchymal stem cells between a tailored 3D hybrid scaffold and a 2D standard culture

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Many medical-related scientific discoveries arise from trial-error patterns where the processes involved must be refined and modified continuously before any product could be able to reach the final costumers. One of the elements affecting negatively these processes is the inaccuracy of two-dimension (2D) standard culture systems, carried over in plastic plates or similar, in replicating complex environments and patterns. Consequently, animal tests are required to validate every in vitro finding, at the expenses of more funds and ethical issues. A possible solution relies in the implementation of three-dimension (3D) culture systems as a fitting gear between the 2D tests and in vivo tests, aiming to reduce the negative in vivo outcomes. These 3D structures are depending from the comprehension of the extracellular matrix (ECM) and the ability to replicate it in vitro. In this article a comparison of efficacies between these two culture systems was taken as subject, human mesenchymal stem cells (hMSCs) was utilized and a hybrid scaffold made by a blend of chitosan, gelatin and biomineralized gelatin was used for the 3D culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12:207–18. https://doi.org/10.1089/adt.2014.573.

    Article  CAS  Google Scholar 

  2. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–54. https://doi.org/10.1016/J.TCB.2011.09.005.

    Article  CAS  Google Scholar 

  3. de la Puente P, Muz B, Gilson RC, Azab F, Luderer M, King J, et al. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomater. 2015;73:70–84. https://doi.org/10.1016/j.biomaterials.2015.09.017.

    Article  CAS  Google Scholar 

  4. Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2006;50:645–52. https://doi.org/10.1387/ijdb.052072hb.

    Article  CAS  Google Scholar 

  5. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015;33:1837–43. https://doi.org/10.3892/or.2015.3767.

    Article  CAS  Google Scholar 

  6. Cole MA, Quan T, Voorhees JJ, Fisher GJ. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal. 2018;12:35–43. https://doi.org/10.1007/s12079-018-0459-1.

    Article  Google Scholar 

  7. Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51. https://doi.org/10.1530/JOE-10-0377.

    Article  CAS  Google Scholar 

  8. Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro-A growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 2005;15:405–12. https://doi.org/10.1016/j.semcancer.2005.06.009.

    Article  Google Scholar 

  9. Byron A, Humphries JD, Humphries MJ. Defining the extracellular matrix using proteomics. Int J Exp Pathol. 2013;94:75–92. https://doi.org/10.1111/iep.12011.

    Article  CAS  Google Scholar 

  10. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: Advantages and applications. J Cell Physiol. 2015;230:16–26. https://doi.org/10.1002/jcp.24683.

    Article  CAS  Google Scholar 

  11. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng B: Rev. 2008;14:61–86. https://doi.org/10.1089/teb.2007.0150.

    Article  CAS  Google Scholar 

  12. Nyga A, Cheema U, Loizidou M. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal. 2011;5:239–48. https://doi.org/10.1007/s12079-011-0132-4.

    Article  Google Scholar 

  13. Panseri S, Montesi M, Dozio SM, Savini E, Tampieri A, Sandri M. Biomimetic scaffold with aligned microporosity designed for dentin regeneration. Front Bioeng Biotechnol. 2016;4:48. https://doi.org/10.3389/fbioe.2016.00048.

    Article  Google Scholar 

  14. Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A. 2003;67:618–25. https://doi.org/10.1002/jbm.a.10039.

    Article  CAS  Google Scholar 

  15. Magin CM, Alge DL, Anseth KS. Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed Mater. 2016;11:022001. https://doi.org/10.1088/1748-6041/11/2/022001.

    Article  CAS  Google Scholar 

  16. Krishnakumar GS, Gostynska N, Dapporto M, Campodoni E, Montesi M, Panseri S, et al. Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine. Int J Biol Macromol. 2018;106:739–48. https://doi.org/10.1016/j.ijbiomac.2017.08.076.

    Article  CAS  Google Scholar 

  17. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med. 2008;19:239–47. https://doi.org/10.1007/s10856-006-0032-y.

    Article  CAS  Google Scholar 

  18. Iafisco M, Ruffini A, Adamiano A, Sprio S, Tampieri A. Biomimetic magnesium-carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger. Mater Sci Eng C Mater Biol Appl. 2014;35:212–9. https://doi.org/10.1016/j.msec.2013.11.009.

    Article  CAS  Google Scholar 

  19. Tampieri A, Sprio S, Sandri M, Valentini FJTib. Mimicking natural bio-mineralization processes: a new tool for osteochondral scaffold development. Trends Biotechnol. 2011;29:526–35.

    Article  CAS  Google Scholar 

  20. Minardi S, Corradetti B, Taraballi F, Sandri M, Van Eps J, Cabrera FJ, et al. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomater. 2015;62:128–37. https://doi.org/10.1016/j.biomaterials.2015.05.011.

    Article  CAS  Google Scholar 

  21. Giorgi P, Capitani D, Sprio S, Sandri M, Tampieri A, Canella V, et al. A new bioinspired collagen-hydroxyapatite bone graft substitute in adult scoliosis surgery: Results at 3-year follow-up. J Appl Biomaterials & Functional Materials. 2017;15:262–70. https://doi.org/10.5301/jabfm.5000366.

    Article  CAS  Google Scholar 

  22. Deans TL, Singh A, Gibson M, Elisseeff JH. Regulating synthetic gene networks in 3D materials. Proc Natl Acad Sci USA. 2012;109:15217–22. https://doi.org/10.1073/pnas.1204705109.

    Article  Google Scholar 

  23. Sobacchi C, Erreni M, Strina D, Palagano E, Villa A, Menale C. 3D bone biomimetic scaffolds for basic and translational studies with mesenchymal stem cells. Int J Mol Sci. 2018;19:3150. https://doi.org/10.3390/ijms19103150.

    Article  CAS  Google Scholar 

  24. Villa MM, Wang L, Huang J, Rowe DW, Wei M. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater. 2015;103:243–53. https://doi.org/10.1002/jbm.b.33225.

    Article  CAS  Google Scholar 

  25. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol: CJASN. 2008;3(Suppl 3):S131–9. https://doi.org/10.2215/cjn.04151206.

    Article  CAS  Google Scholar 

  26. Muzzarelli RAA, El Mehtedi M, Bottegoni C, Aquili A, Gigante A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs. 2015;13:7314–38. https://doi.org/10.3390/md13127068.

    Article  CAS  Google Scholar 

  27. Mao JS, Zhao LG, Yin YJ, Yao KD. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials. 2003;24:1067–74.

    Article  CAS  Google Scholar 

  28. Mann S. Biomineralization: principles and concepts in bioinorganic materials chemistry. Bristol, UK: Oxford University Press on Demand; 2001.

  29. Rodríguez GR, Patrício T, López JD. Natural polymers for bone repair. Bone Repair Biomaterials. Duxford, UK: Elsevier; 2019. p. 199–232.

  30. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B, Rev. 2013;19:485–502. https://doi.org/10.1089/ten.TEB.2012.0437.

    Article  CAS  Google Scholar 

  31. Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, et al. Biomimetic Mg-and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceramic Soc. 2006;26:2593–601.

    Article  CAS  Google Scholar 

  32. Rosso F, Giordano A, Barbarisi M, Barbarisi A. From Cell-ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80. https://doi.org/10.1002/jcp.10471.

    Article  CAS  Google Scholar 

  33. Preti L, Lambiase B, Campodoni E, Sandri M, Ruffini A, Pugno N et al. Nature-inspired processes and structures: new paradigms to develop highly bioactive devices for hard tissue regeneration. Bio-Inspired Technology. London, UK: IntechOpen; 2019.

    Google Scholar 

  34. Echave MC, Saenz del Burgo L, Pedraz JL, Orive G. Gelatin as biomaterial for tissue engineering. Curr Pharm Des. 2017;23:3567–84. https://doi.org/10.2174/0929867324666170511123101.

    Article  CAS  Google Scholar 

  35. Bouchet BP, Akhmanova A. Microtubules in 3D cell motility. 2017;130:39–50. https://doi.org/10.1242/jcs.189431.

    Article  CAS  Google Scholar 

  36. Valentijn AJ, Zouq N, Gilmore AP. Anoikis. Biochem Soc Trans. 2004;32:421–5. https://doi.org/10.1042/bst0320421.

    Article  CAS  Google Scholar 

  37. Ranceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Ann N Y Acad Sci. 2007;1116:196–207. https://doi.org/10.1196/annals.1402.081.

    Article  CAS  Google Scholar 

  38. Orlando B, Giacomelli L, Ricci M, Barone A, Covani U. Leader genes in osteogenesis: a theoretical study. Arch Oral Biol. 2013;58:42–9. https://doi.org/10.1016/j.archoralbio.2012.07.010.

    Article  CAS  Google Scholar 

  39. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22:233–41. https://doi.org/10.1080/08977190412331279890.

    Article  CAS  Google Scholar 

  40. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21:1025–32. https://doi.org/10.1038/nbt864.

    Article  CAS  Google Scholar 

  41. Zhang Y, Yang W, Devit A, van den Beucken JJJP. Efficiency of coculture with angiogenic cells or physiological BMP-2 administration on improving osteogenic differentiation and bone formation of MSCs. 2019;107:643–53. https://doi.org/10.1002/jbm.a.36581.

    Article  Google Scholar 

  42. Sgambato A, Russo L, Montesi M, Panseri S, Marcacci M, Carava E, et al. Different sialoside epitopes on collagen film surfaces direct mesenchymal stem cell fate. ACS Appl Mater Interfaces. 2016;8:14952–7. https://doi.org/10.1021/acsami.5b08270.

    Article  CAS  Google Scholar 

  43. Chen C, Wei X, Ling J, Xie N. Expression of matrilin-2 and -4 in human dental pulps during dentin-pulp complex wound healing. J Endod. 2011;37:642–9. https://doi.org/10.1016/j.joen.2011.02.018.

    Article  Google Scholar 

  44. Paakkonen V, Vuoristo JT, Salo T, Tjaderhane L. Comparative gene expression profile analysis between native human odontoblasts and pulp tissue. Int Endod J. 2008;41:117–27. https://doi.org/10.1111/j.1365-2591.2007.01327.x.

    Article  CAS  Google Scholar 

  45. Wagener R, Kobbe B, Paulsson M. Matrilin-4, a new member of the matrilin family of extracellular matrix proteins. FEBS Letters. 1998;436:123–7. https://doi.org/10.1016/S0014-5793(98)01111-9.

    Article  CAS  Google Scholar 

  46. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9. https://doi.org/10.1172/JCI28551.

    Article  CAS  Google Scholar 

  47. Han N, Zheng Y, Li R, Li X, Zhou M, Niu Y, et al. Beta-catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2. PLoS ONE. 2014;9:e88890. https://doi.org/10.1371/journal.pone.0088890.

    Article  CAS  Google Scholar 

  48. Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008;22:2308–41. https://doi.org/10.1101/gad.1686208.

    Article  CAS  Google Scholar 

  49. Lim X, Nusse R. Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harbor perspectives in biology. 2013;5. https://doi.org/10.1101/cshperspect.a008029.

    Google Scholar 

  50. Chen J, Lan Y, Baek JA, Gao Y, Jiang R. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev Biol. 2009;334:174–85. https://doi.org/10.1016/j.ydbio.2009.07.015.

    Article  CAS  Google Scholar 

  51. Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA. 2006;103:18627–32. https://doi.org/10.1073/pnas.0607289103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuele M. Dozio or Monica Montesi.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dozio, S.M., Montesi, M., Campodoni, E. et al. Differences in osteogenic induction of human mesenchymal stem cells between a tailored 3D hybrid scaffold and a 2D standard culture. J Mater Sci: Mater Med 30, 136 (2019). https://doi.org/10.1007/s10856-019-6346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6346-3

Navigation