Skip to main content
Log in

Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen I scaffold in the presence of low-frequency magnetic field

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

As a non-invasive biophysical therapy, electromagnetic fields (EMF) have been widely used to promote the healing of fractures. In the present study, hydroxyapatite/collagen I (HAC) loaded with rabbit bone marrow mesenchymal stem cells (MSCs) were cultured in a dynamic perfusion bioreactor and exposed to EMF of 15 Hz/1mT. Osteogenic differentiation of the seeded cells was analyzed through the evaluation of ALP activity and osteogenesis-related genes expression in vitro. The in vivo osteogenesis efficacy of the cell laden HAC constructs treated with/without EMF was evaluated through a rabbit femur condyle defect model. The results showed that EMF of 15 Hz/1mT could enhance the osteogenic differentiation of the cells seeded on HAC scaffold. Furthermore, the in vivo experiments demonstrated that EMF exposure could promote bone regeneration within the defect and bone integration between the graft and host bone. Taking together, the MSCs seeded HAC scaffold combined with EMF exposure could be a promising approach for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. Bmc Med 2011;9:66. https://doi.org/10.1186/1741-7015-9-66

    Article  Google Scholar 

  2. Wang H, Cheng H, Tang X, Chen J, Zhang J, Wang W, et al. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone. J Biomed Mater Res A 2018;106:1008–21. https://doi.org/10.1002/jbm.a.36287

    Article  CAS  Google Scholar 

  3. Harada N, Watanabe Y, Sato K, Abe S, Yamanaka K, Sakai Y, et al. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 2014;35:7800–10. https://doi.org/10.1016/j.biomaterials.2014.05.052.

    Article  CAS  Google Scholar 

  4. Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 2016;83:363–82. https://doi.org/10.1016/j.biomaterials.2016.01.024

    Article  CAS  Google Scholar 

  5. Yu XH, Tang XY, Gohil SV, Laurencin CT. Biomaterials for Bone Regenerative Engineering. Adv Health Mater 2015;4:1268–85. https://doi.org/10.1002/adhm.201400760

    Article  CAS  Google Scholar 

  6. Rauh J, Milan F, Gunther KP, Stiehler M. Bioreactor Systems for Bone Tissue Engineering. Tissue Eng Pt B-Rev 2011;17:263–80. https://doi.org/10.1089/ten.teb.2010.0612

    Article  CAS  Google Scholar 

  7. Fielding G, Bose S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater 2013;9:9137–48. https://doi.org/10.1016/j.actbio.2013.07.009

    Article  CAS  Google Scholar 

  8. Fini M, Cadossi R, Cane V, Cavani F, Giavaresi G, Krajewski A, et al. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J Orthop Res: Off Publ Orthop Res Soc 2002;20:756–63. https://doi.org/10.1016/s0736-0266(01)00158-9

    Article  CAS  Google Scholar 

  9. Fini M, Giavaresi G, Setti S, Martini L, Torricelli P, Giardino R. Current trends in the enhancement of biomaterial osteointegration: biophysical stimulation. Int J Artif Organs 2004;27:681–90. https://doi.org/10.1177/039139880402700806

    Article  CAS  Google Scholar 

  10. Hui CFF, Chan CW, Yeung HY, Lee KM, Qin L, Li G, et al. Low-intensity pulsed ultrasound enhances posterior spinal fusion implanted with mesenchymal stem cells-calcium phosphate composite without bone grafting. Spine 2011;36:1010–6. https://doi.org/10.1097/brs.0b013e318205c5f5

    Article  Google Scholar 

  11. Di Palma F, Douet M, Boachon C, Guignandon A, Peyroche S, Forest B, et al. Physiological strains induce differentiation in human osteoblasts cultured on orthopaedic biomaterial. Biomaterials 2003;24:3139–51. https://doi.org/10.1016/s0142-9612(03)00152-2

    Article  Google Scholar 

  12. Lin HY, Lu KH. Repairing large bone fractures with low frequency electromagnetic fields. J Orthop Res: Off Publ Orthop Res Soc 2010;28:265–70. https://doi.org/10.1002/jor.20964

    Article  CAS  Google Scholar 

  13. Diniz P, Shomura K, Soejima K, Ito G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 2002;23:398–405. https://doi.org/10.1002/bem.10032

    Article  Google Scholar 

  14. Ciombor DM, Aaron RK. Influence of electromagnetic fields on endochondral bone formation. J Cell Biochem 1993;52:37–41. https://doi.org/10.1002/jcb.240520106

    Article  CAS  Google Scholar 

  15. Kang KS, Hong JM, Jeong YH, Seol YJ, Yong WJ, Rhie JW, et al. Combined effect of three types of biophysical stimuli for bone regeneration. Tissue Eng Part A 2014;20:1767–77. https://doi.org/10.1089/ten.TEA.2013.0157

    Article  Google Scholar 

  16. Luo F, Hou T, Zhang Z, Xie Z, Wu X, Xu J. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics 2012;35:e526–31. https://doi.org/10.3928/01477447-20120327-11

    Article  Google Scholar 

  17. Song M, Zhao D, Wei S, Liu C, Liu Y, Wang B, et al. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics 2014;35:479–90. https://doi.org/10.1002/bem.21867

    Article  CAS  Google Scholar 

  18. Yong Y, Ming ZD, Feng L, Chun ZW, Hua W. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med 2016;10:E537–45. https://doi.org/10.1002/term.1864

    Article  CAS  Google Scholar 

  19. Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, et al. Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res: Off Publ Orthop Res Soc 2010;28:677–86. https://doi.org/10.1002/jor.21032

    Article  CAS  Google Scholar 

  20. Sugata Y, Sotome S, Yuasa M, Hirano M, Shinomiya K, Okawa A. Effects of the systemic administration of alendronate on bone formation in a porous hydroxyapatite/collagen composite and resorption by osteoclasts in a bone defect model in rabbits. J Bone Jt Surg Br 2011;93:510–6. https://doi.org/10.1302/0301-620x.93b4.25239

    Article  CAS  Google Scholar 

  21. Calabrese G, Giuffrida R, Fabbi C, Figallo E, Lo Furno D, Gulino R, et al. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro. PloS ONE 2016;11:e0151181. https://doi.org/10.1371/journal.pone.0151181

    Article  CAS  Google Scholar 

  22. Somaiah C, Kumar A, Mawrie D, Sharma A, Patil SD, Bhattacharyya J, et al. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PloS ONE 2015;10:e0145068. https://doi.org/10.1371/journal.pone.0145068

    Article  CAS  Google Scholar 

  23. Matthews BG, Naot D, Callon KE, Musson DS, Locklin R, Hulley PA, et al. Enhanced osteoblastogenesis in three-dimensional collagen gels. Bone Rep 2014;3:560. https://doi.org/10.1038/bonekey.2014.55

    Article  CAS  Google Scholar 

  24. Qian X, Yuan F, Zhimin Z, Anchun M. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffold in vitro. J Biomed Mater Res Part B, Appl Biomater 2013;101:893–901. https://doi.org/10.1002/jbm.b.32894

    Article  CAS  Google Scholar 

  25. Liu C, Abedian R, Meister R, Haasper C, Hurschler C, Krettek C, et al. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials 2012;33:1052–64. https://doi.org/10.1016/j.biomaterials.2011.10.041

    Article  CAS  Google Scholar 

  26. Chong AKS, Ang AD, Goh JCH, Hui JHP, Lim AYT, Lee EH, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit Achilles tendon model. J Bone Jt Surg Am 2007;89A:74–81. https://doi.org/10.2106/jbjs.e.01396

    Article  Google Scholar 

  27. Tan SL, Ahmad TS, Selvaratnam L, Kamarul T. Isolation, characterization and the multi-lineage differentiation potential of rabbit bone marrow-derived mesenchymal stem cells. J Anat 2013;222:437–50. https://doi.org/10.1111/joa.12032

    Article  CAS  Google Scholar 

  28. Cui F-Z, Li Y, Ge J. Self-assembly of mineralized collagen composites 2007;57:1–27. https://doi.org/10.1016/j.mser.2007.04.001.

    Article  Google Scholar 

  29. Tang X, Teng S, Liu C, Jagodzinski M. Influence of Hydrodynamic Pressure on the Proliferation and Osteogenic Differentiation of Bone Mesenchymal Stromal Cells Seeded on Polyurethane Scaffolds. J Biomed Mater Res A 2017;105:3445–55. https://doi.org/10.1002/jbm.a.36197

    Article  CAS  Google Scholar 

  30. Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 2010;31:277–85. https://doi.org/10.1002/bem.20560

    Article  CAS  Google Scholar 

  31. Yu JZ, Wu H, Yang Y, Liu CX, Liu Y, Song MY. Osteogenic differentiation of bone mesenchymal stem cells regulated by osteoblasts under EMF exposure in a co-culture system. J Huazhong Univ Sci Technol Med Sci=Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban=Huazhong keji daxue xuebao Yixue Yingdewen ban 2014;34:247–53. https://doi.org/10.1007/s11596-014-1266-4

    Article  CAS  Google Scholar 

  32. Teixeira CC, Hatori M, Leboy PS, Pacifici M, Shapiro IM. A rapid and ultrasensitive method for measurement of DNA, calcium and protein content, and alkaline phosphatase activity of chondrocyte cultures. Calcif Tissue Int 1995;56:252–6. https://doi.org/10.1007/bf00298620

    Article  CAS  Google Scholar 

  33. Kang Y, Kim S, Fahrenholtz M, Khademhosseini A, Yang Y. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater 2013;9:4906–15. https://doi.org/10.1016/j.actbio.2012.08.008

    Article  CAS  Google Scholar 

  34. Link DP, van den Dolder J, van den Beucken JJ, Wolke JG, Mikos AG, Jansen JA. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials 2008;29:675–82. https://doi.org/10.1016/j.biomaterials.2007.10.029

    Article  CAS  Google Scholar 

  35. Qi X, Li H, Qiao B, Li W, Hao X, Wu J, et al. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair. Int J Nanomed 2013;8:4441–52. https://doi.org/10.2147/IJN.S54289

    Article  CAS  Google Scholar 

  36. Cao L, Wang J, Hou J, Xing W, Liu C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials 2014;35:684–98. https://doi.org/10.1016/j.biomaterials.2013.10.005

    Article  CAS  Google Scholar 

  37. Shrivats AR, McDermott MC, Hollinger JO. Bone tissue engineering: state of the union. Drug Disco Today 2014;19:781–6. https://doi.org/10.1016/j.drudis.2014.04.010

    Article  CAS  Google Scholar 

  38. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012;30:546–54. https://doi.org/10.1016/j.tibtech.2012.07.005

    Article  CAS  Google Scholar 

  39. Zhou Y, Wu Y, Jiang X, Zhang X, Xia L, Lin K, et al. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells. PloS ONE 2015;10:e0129605. https://doi.org/10.1371/journal.pone.0129605

    Article  CAS  Google Scholar 

  40. Lin CC, Lin RW, Chang CW, Wang GJ, Lai KA. Single-Pulsed Electromagnetic Field Therapy Increases Osteogenic Differentiation Through Wnt Signaling Pathway and Sclerostin Downregulation. Bioelectromagnetics 2015;36:494–505. https://doi.org/10.1002/bem.21933

    Article  CAS  Google Scholar 

  41. Jazayeri M, Shokrgozar MA, Haghighipour N, Bolouri B, Mirahmadi F, Farokhi M. Effects of Electromagnetic Stimulation on Gene Expression of Mesenchymal Stem Cells and Repair of Bone Lesions. Cell J 2017;19:34–44. https://doi.org/10.22074/cellj.2016.4870

    Article  Google Scholar 

  42. Arjmand M, Ardeshirylajimi A, Maghsoudi H, Azadian E. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field. J Cell Physiol 2018;233:1061–70. https://doi.org/10.1002/jcp.25962

    Article  CAS  Google Scholar 

  43. Jansen JH, van der Jagt OP, Punt BJ, Verhaar JA, van Leeuwen JP, Weinans H, et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet Disord 2010;11:188. https://doi.org/10.1186/1471-2474-11-188

    Article  CAS  Google Scholar 

  44. Yan J, Dong L, Zhang B, Qi N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electro Biol Med 2010;29:165–76. https://doi.org/10.3109/01676830.2010.505490

    Article  CAS  Google Scholar 

  45. Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene 2009;433:1–7. https://doi.org/10.1016/j.gene.2008.12.008

    Article  CAS  Google Scholar 

  46. Lerner UH, Ohlsson C. The WNT system: background and its role in bone. J Intern Med 2015;277:630–49. https://doi.org/10.1111/joim.12368

    Article  CAS  Google Scholar 

  47. Cong F, Schweizer L, Chamorro M, Varmus H. Requirement for a nuclear function of beta-catenin in Wnt signaling. Mol Cell Biol 2003;23:8462–70. https://doi.org/10.1128/MCB.23.23.8462-8470.2003

    Article  CAS  Google Scholar 

  48. Rotherham M, El Haj AJ. Remote activation of the Wnt/beta-catenin signalling pathway using functionalised magnetic particles. PloS ONE 2015;10:e0121761. https://doi.org/10.1371/journal.pone.0121761

    Article  CAS  Google Scholar 

  49. Jing D, Li FJ, Jiang MG, Cai J, Wu Y, Xie KN, et al. Pulsed Electromagnetic Fields Improve Bone Microstructure and Strength in Ovariectomized Rats through a Wnt/Lrp5/beta-Catenin Signaling-Associated Mechanism. PloS ONE 2013;8. https://doi.org/10.1371/journal.pone.0079377.

    Article  Google Scholar 

  50. Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Curr stem cell Res Ther 2008;3:254–64. https://doi.org/10.2174/157488808786733962

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by National Natural Science Foundation of China (No.51877097, No.51537004), Independent Innovative Research Funds of HUST (No.2014QN094) and Research Funds of Tongji Hospital (No. 2017B012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wu or Chaoxu Liu.

Ethics declarations

Conflict of interest

The authors have no financial disclosures or conflicts of interest with the research presented here.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Huaixi Wang and Xiangyu Tang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tang, X., Li, W. et al. Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen I scaffold in the presence of low-frequency magnetic field. J Mater Sci: Mater Med 30, 89 (2019). https://doi.org/10.1007/s10856-019-6289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6289-8

Keywords

Navigation