Skip to main content
Log in

Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biocompatible PtxIr(1−x) layers combining high mechanical strength of the iridium component and outstanding corrosion resistance of the platinum component providing reversible charge transfer reactions in the living tissue are one of the important materials required for implantable medical electrodes. The modern trend to complicate the shape and reduce the electrode dimensions includes the challenge to develop precise methods to obtain such bimetallic coatings with enhanced surface area and advanced electrochemical characteristics. Herein, PtxIr(1−x) coatings were firstly obtained on cathode and anode pole tips of endocardial electrodes for pacemakers using chemical vapor deposition technique. To deposit PtxIr(1−x) coatings with a wide range of metal ratios (x = 0.5–0.9) the combination of acetylacetonate-based volatile precursors with compatible thermal characteristics was used for the first time. The expected metal ratio in the coatings was regulated by a partial pressure of the precursor vapors in the reaction zone and was in the good agreement with its real value measured by various methods, including energy-dispersive and wavelength dispersive spectroscopy, X-ray photoelectron spectroscopy. According to the X-ray powder diffraction analysis, PtxIr(1−x) coatings consisted of fcc-PtxIr(1−x) solid solution phases. The microscopy data confirmed the formation of PtxIr1−x coatings with the enhanced surface areas. The effect of electrochemical activation on the surface composition and morphology of the samples was studied. The electrochemical characteristics of samples were estimated from cyclic voltammetry and electrochemical impedance spectroscopy data. The charge storage capacity (CSC) values of activated samples were in the range of 19–108 mCcm−2 (phosphate buffer saline solution, 100 mV/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Selvaraj RJ, Picton P, Nanthakumar K, Mak S, Chauhan VS. Endocardial and epicardial repolarization alternans in human cardiomyopathy: evidence for spatiotemporal heterogeneity and correlation with body surface T-wave alternans. J Am Coll Cardiol. 2007;49:338–6.

    Google Scholar 

  2. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.

    CAS  Google Scholar 

  3. Huang SY, Eggers M, McArthur MJ, Dixon KA, McWatters A, Dria S et al. Safety and efficacy of an absorbable filter in the inferior vena cava to prevent pulmonary embolism in swine. Radiology. 2017;285:820–9.

    Google Scholar 

  4. Norlin A, Pan J, Leygraf C. Investigation of electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications II. Conducting oxide electrodes. J Electrochem Soc. 2005;152:J85–2.

    CAS  Google Scholar 

  5. Petrossians A, Whalen JJ, Weiland JD, Mansfeld F. Electrodeposition and characterization of thin-film platinum-iridium alloys for biological interfaces. Electrochem Soc. 2011;158:D269–6.

    CAS  Google Scholar 

  6. Andreev ES, Vasilenko YuB, Vershok BA, Zverev AA, Obrezkov OI. Thin-film coating of pole tips of endocardial electrodes of cardiostimulators and method of its obtaining, RU 2013; 2013134271/02.

  7. Specht H, Krüger F, Wachter HJ, Keitel O, Leitold C, Frericks M. Structural properties of PVD coatings on implants and their influence on stimulation performance in pacing applications, WC Heraeus GmbH & Co. KG; 2004. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.502.685.

  8. Petrossians A, Whalen JJ, Weiland JD, Mansfeld F Mansfeld. Surface modification of neural stimulating/recording electrodes with high surface area platinum-iridium alloy coatings, In Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE. 2011; 3001–04. https://doi.org/10.1109/IEMBS.2011.6090823.

  9. Zhou DM, Greenberg RJ, Talbot NH. Adherent metal oxide coating forming a high surface area electrode. US Patent No. 2013;8,489:202.

  10. Xu L. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv Mater. 2015;27:1731–7.

    CAS  Google Scholar 

  11. Börge W, Mokwa W, Schnakenberg U. Sputtered Ir films evaluated for electrochemical performance I. Experimental results. J Electrochem Soc. 2008;155:F61–5.

    Google Scholar 

  12. Fengyan Z, Hsu ShT. Optical device with IrOx nanostructure electrode neural interface. US Patent No. 2009;7,494:8404.

  13. Wessling B, Mokwa W, Schnakenberg U. RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants. J Micromech Microeng. 2006;16:S142–8.

    CAS  Google Scholar 

  14. Slavcheva E, Vitushinsky R, Mokwa W, Schnakenberg U. Sputtered iridium oxide films as charge injection material for functionalized electrostimulation. J Electrochem Soc. 2004;151:E226–37.

    CAS  Google Scholar 

  15. Norlin A, Pan J, Leygraf C. Investigation of electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications I. Pt, Ti, and TiN coated electrodes. J Electrochem Soc. 2005;152:J7–15.

    CAS  Google Scholar 

  16. Dupont AC, Bagg SD, Baker L, Creasy JL, Romano C. First patients with BION implants for therapeutic electrical stimulation. Neuromodulation. 2004;7:38–7.

    Google Scholar 

  17. Nyberg T, Shimada A, Torimitsu K. Ion conducting polymer microelectrodes for interfacing with neural networks. J Neurosci Methods. 2007;160:16–5.

    CAS  Google Scholar 

  18. Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 2006;6:2043–8.

    CAS  Google Scholar 

  19. Cogan SF, Troyk PR, Ehrlich J, Plante TD. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. IEEE Trans. Biomed Eng. 2005;52:1612–4.

    Google Scholar 

  20. Pan Y, Noda T, Sasagawa K, Tokuda T, Ohta J. Sputtering condition optimization of sputtered IrOx and TiN stimulus electrodes for retinal prosthesis. IEEJ Trans. Electr. Electron Eng. 2013;8:310–2.

    CAS  Google Scholar 

  21. Lee SH, Jung JH, Chae YM, Suh JKF, Kang JY. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering. J Micromech Microeng. 2010;20:035015.

    Google Scholar 

  22. Vikulova ES, Kal’nyi DB, Shubin YV, Kokovkin VV, Morozova NB, Hassan A et al. Metal Ir coatings on endocardial electrode tips, obtained by MOCVD. Appl Surf Sci. 2017;425:1052–8.

    CAS  Google Scholar 

  23. Yamagiwa S, Fujishiro A, Sawahata H, Numano R, Ishida M, Kawano T. Layer-by-layer assembled nanorough iridium-oxide/platinum-black for low-voltage microscale electrode neurostimulation. Sens Actuators B. 2015;206:205–11.

    CAS  Google Scholar 

  24. Meijs S, Fjorback M, Jensen C, Sørensen S, Rechendorff K, Rijkhoff NJ. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study. Front Neurosci. 2015;9:268–12.

    Google Scholar 

  25. Berry R, Paskaranandavadivel N, Du P, Trew ML, O’Grady G, Windsor JA et al. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns. Surgical endosc. 2017;31:477–86.

    Google Scholar 

  26. Ganske G, Slavcheva E, van, Ooyen A, Mokwa W, Schnakenberg U. Sputtered platinum–iridium layers as electrode material for functional electrostimulation. Thin Solid Films. 2011;519:3965–70.

    CAS  Google Scholar 

  27. Choi ES, Park JB, Yoon SG. Integration of Pt/Ru bottom electrode structures onto polycrystalline silicon by MOCVD. Chem Vapor Depos. 2001;7:260–4.

    CAS  Google Scholar 

  28. Dorovskikh SI, Vikulova ES, Nikolaeva NS, Shushanyan AD, Parkhomenko RG, Morozova NB et al. Hybrid film structures based on palladium layers and metal phthalocyanines. Sci Adv Mater. 2017;9:1087–92.

    CAS  Google Scholar 

  29. Christensen ST, Feng H, Libera JL, Guo N, Miller JT, Stair PC et al. Supported Ru−Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett. 2010;10:3047–51.

    CAS  Google Scholar 

  30. Gelfond NV, Krisyk VV, Dorovskikh SI, Kal’nyi DB, Maksimovskii EA, Shubin YV et al. Structure of platinum coatings obtained by chemical vapor deposition. J. Struct Chem. 2015;56:1215–9.

    CAS  Google Scholar 

  31. Badstuebner K, Stubbe M, Kroeger T, Mix E, Gimsa J. Impedance detection of the electrical resistivity of the wound tissue around deep brain stimulation electrodes permits registration of the encapsulation process in a rat model. J Electr Bioimpedance. 2017;8:11–24.

    Google Scholar 

  32. Gielen FLH, Bergveld P. Comparison of electrode impedances of Pt, PtIr (10% Ir) and Ir-AIROF electrodes used in electrophysiological experiments. Med Biol Eng Comput. 1982;20:77–83.

    CAS  Google Scholar 

  33. Vikulova ES, Ilyin IY, Karakovskaya KI, Piryazev DA, Turgambaeva AE, Morozova NB. Volatile iridium (I) complexes with β-diketones and cyclooctadiene: syntheses, structures and thermal properties. J Coord Chem. 2016;69:2281–90.

    CAS  Google Scholar 

  34. Igumenov IK, Gelfond NV, Morozova NB, Nizard H. Overview of coating growth mechanisms in MOCVD processes as observed in Pt group metals. Chem Vapor Depos. 2007;13:633–7.

    CAS  Google Scholar 

  35. Morozova NB, Semyannikov PP, Trubin SV, Stabnikov PA, Bessonov AA, Zherikova KV et al. Vapor pressure of some volatile iridium (I) compounds with carbonyl, acetylacetonate and cyclopentadienyl ligands. J Therm Anal Calorim 2009;96:261–6.

    CAS  Google Scholar 

  36. Vasilyev VY, Morozova NB, Basova TV, Igumenov IK, Hassan A. Chemical vapour deposition of Ir-based coatings: chemistry, processes and applications. RSC Adv. 2015;5:32034–63.

    CAS  Google Scholar 

  37. Morozova NB, Gelfond NV, Semyannikov PP, Trubin SV, Igumenov IK, Gimeno-Fabra L. Thermal properties of Ir(I) precursors: acetylacetonato (1,5-cyclooctadiene) iridium(I) and (methylcyclopentadienyl) (1,5-cyclooctadiene) iridium(I) In: MD Allendorf, F Maury, F Teyssandier (Eds.), International Symposium Chemical Vapor Deposition. XVI EUROCVD 14, Massachusetts: The Electrochemical Society Inc.; 2003. p. 120–7.

  38. Bot AW. Practical problems in voltammetry: 4. Preparation of working electrodes. Curr Sep. 1997;16:79–84.

    Google Scholar 

  39. Bai L, Harrington DA, Conway BE. Behavior of overpotential—deposited species in Faradaic reactions—II. ac impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes. Electrochim Acta. 1987;32:1713–31.

    CAS  Google Scholar 

  40. Cullity BD. Elements of X-ray Diffraction. Massachusetts, USA: Addison-Wesley Publishing Company Reading; 1978. p. 350–79.

    Google Scholar 

  41. Freakley SJ, Ruiz-Esquius J, Morgan DJ. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 2017;49:794–9.

    CAS  Google Scholar 

  42. Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Greiner MT, Arrigo R et al. The electronic structure of iridium oxide electrodes active in water splitting. Phys Chem Chem Phys. 2016;18:2292–9.

    CAS  Google Scholar 

  43. Ullah N, Omanovic S. Large charge-storage-capacity iridium/ruthenium oxide coatings as promising material for neural stimulating electrodes. Mater Chem Phys. 2015;159:119–27.

    CAS  Google Scholar 

  44. Kang X, Liu J, Tian H, Zhang C, Yang B, NuLi Y et al. Controlled activation of iridium film for AIROF microelectrodes. Sens Actuators B. 2014;190:601–11.

    CAS  Google Scholar 

  45. James SD. The electrochemical activation of platinum electrodes. J Electrochem Soc. 1967;114:1113–9.

    CAS  Google Scholar 

  46. Powder Diffraction File, PDF-2/Release 2009, International Centre for Diffraction Date, USA; 2009. http://www.icdd.com.

  47. Silva da LA, Alves VA, Castro de SC, Boodts JFC. XPS study of the state of iridium, platinum, titanium and oxygen in thermally formed IrO2+TiO2+PtOX films. Colloids Surf A. 2000;170:119–26.

    Google Scholar 

  48. Gelfond NV, Igumenov IK, Boronin AI, Bukhtiyarov VI, Smirnov MY, Prosvirin IP et al. An XPS study of the composition of iridium films obtained by MOCVD. Surf Sci. 1992;275:323–31.

    CAS  Google Scholar 

  49. Preethi LK, Antony RP, Mathews T, Dash S, Tyagi AK. Optical transmittance and electrocatalytic efficacy of chronoamperometrically and chronopotentiometrically deposited platinum electrodes for DSSC application. J Nanosci Nanotechnol. 2016;16:10087–96.

    CAS  Google Scholar 

  50. Pell WG, Zolfaghari A, Conway BE. Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film. J Electroanal Chem. 2002;532:13–23.

    CAS  Google Scholar 

  51. Cogan SF, Troyk PR, Ehrlich J, Plante TD, Detlefsen DE. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Trans Biomed Eng. 2006;53:327–32.

    Google Scholar 

  52. Kang X, Liu J, Tian H, Zhang C, Yang B, NuLi Y et al. Controlled activation of iridium film for AIROF microelectrodes. Sens Actuators B. 2014;190:601–11.

    CAS  Google Scholar 

  53. Colindres SC, García JV, Antonio JT, Chavez CA. Preparation of platinum-iridium nanoparticles on titania nanotubes by MOCVD and their catalytic evaluation. J Alloys Comp. 2009;483:406–9.

    CAS  Google Scholar 

  54. Christensen ST, Elam JW. Atomic layer deposition of Ir−Pt alloy films. Chem Mater. 2010;22:2517–25.

    CAS  Google Scholar 

  55. Daniele S, Battistel D, Gerbasi R, Benetollo F, Battiston S. Titania‐coated platinum thin films by MOCVD: electrochemical and photoelectrochemical properties. Chem Vap Depos. 2007;13:644–50.

    CAS  Google Scholar 

  56. Hernande-Perez MA, Vargas-Garcia JR, Romero-Serrano JA. CVD phase diagrams for iridium films preparation. Revista de Metalurgia. 2002;38:30–7.

    Google Scholar 

  57. Kawano K, Furukawa T, Takamori M, Tada KI, Yamakawa T, Oshima N et al. A novel iridium precursor for MOCVD. ECS Trans. 2006;1:133–8.

    CAS  Google Scholar 

  58. Chen YL, Liu CS, Chi Y, Carty AJ, Peng SM, Lee GH. Deposition of iridium thin films using new IrI CVD precursors. Chem Vapor Depos2002;8:17–20.

    CAS  Google Scholar 

  59. Hoke JB, Stern EW, Murray HH. Low-temperature vapour deposition of high-purity iridium coatings from cyclooctadiene complexes of iridium. Synthesis of a novel liquid iridium chemical vapour deposition precursor. J Mater Chem. 1991;1:551–4.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation (grant no. 18-73-00052). HRTEM Studies were performed using the equipment of CKP “Nanostructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana I. Dorovskikh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorovskikh, S.I., Vikulova, E.S., Kal’nyi, D.B. et al. Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications. J Mater Sci: Mater Med 30, 69 (2019). https://doi.org/10.1007/s10856-019-6275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6275-1

Keywords

Navigation