Skip to main content

Advertisement

Log in

Enhanced mechanical properties and biosafety evaluation of surface-modified fiberglass-reinforced resin-based composite piles

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study is to analyze various surface grafting modifications of fiberglass-reinforced resin based composite piles. In addition, the effects of surface modifications of fiberglass-reinforced resin piles in terms of biosafety and mechanical strength were studied. According to different surface treatment methods, the fiberglass was divided into five groups (A–E): a blank control group, a KH570 processing group, a KH570 processing+Bis-GMA grafting 1 h group, a KH570 processing+Bis-GMA grafting 3 h group and a KH570 processing+Bis-GMA grafting 7 h group. All surface-treated materials were characterized using scanning electron microscope, thermogravimetric analyses and Fourier transform infrared spectrum and mechanical testing using a universal mechanical tester. The biosafety was evaluated by cell viability experiments and repeated oral toxicity tests and Ames tests. The Bis-GMA grafting modification further enhanced the mechanical properties of resin piles. By increasing the grafting time, the grafting effect and mechanical properties were further enhanced. The surfaces grafted for 7 h (Group E) remarkably improved the mechanical properties (flexural strength ~696.24 MPa; flexural load ~185.67N). The graft modifications improved the mechanical properties of fiber pile resin-based materials. The prolonged grafting time further improved the mechanical properties corresponding to enhanced grafting and the formation of a stable interface between fibers and the resin matrix. The surface-modified dental resin-based fiber did not show any signs of toxicity, cytotoxicity or mutagenicity, suggesting the potential biological safety of these materials in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reeh ES, Messer HH, Douglas WH. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod. 1989;15:512–7.

    Article  CAS  Google Scholar 

  2. Martinez-Insua A, Da Silva L, Rilo B, Santana U. Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core. J Prosthet Dent. 1998;80:527–32.

    Article  CAS  Google Scholar 

  3. Creugers NH, Mentink AG, Käyser AF. An analysis of durability data on post and core restorations. J Dent. 1993;21:281–4.

    Article  CAS  Google Scholar 

  4. Goracci C, Ferrari M. Current perspectives on post systems: a literature review. Aust Dent J. 2011;56:77–83.

    Article  Google Scholar 

  5. Lamichhane A, Xu C, Zhang FQ. Dental fiber-post resin base material: a review. J Adv Prosthodont. 2014;6:60–5.

    Article  Google Scholar 

  6. Spalten RG. Composite resins to restore mutilated teeth. J Prosthet Dent. 1971;25:323–6.

    Article  CAS  Google Scholar 

  7. Baraban DJ. Immediate restoration of pulpless teeth. J Prosthet Dent. 1972;28:607–12.

    Article  CAS  Google Scholar 

  8. Duret B, Reynaud M, Duret F. New concept of coronoradicular reconstruction: the Composipost (1). Chir Dent Fr. 1990;60:131–41.

    CAS  Google Scholar 

  9. Figueiredo FE, Martins-Filho PR, Faria-E-Silva AL. Do metal post-retained restorations result in more root fractures than fiber post-retained restorations? A systematic review and meta-analysis. J Endod. 2015;41:309–16.

    Article  Google Scholar 

  10. Garoushi S, Tanner J, Vallittu P, Lassila L. Preliminary clinical evaluation of short fiber-reinforced composite resin in posterior teeth: 12-months report. Open Dent J. 2012;6:41–5.

    Article  CAS  Google Scholar 

  11. Lamichhane A, Xu C, Zhang FQ. Dental fiber-post resin base material: a review. J Adv Prosthodont. 2014;6:60–5.

    Article  Google Scholar 

  12. Visco AM, Calabrese L, Campo N, Torrisi L, Oteri G, Lo Giudice G, et al. Mechanical behavior of quartz fiber reinforced epoxy resins for teeth restoration. Biomed Mater Eng. 2006;16:349–58.

    CAS  Google Scholar 

  13. Garcia PP, da Costa RG, Garcia AV, Gonzaga CC, da Cunha LF, Rezende CE, et al. Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts. J Clin Exp Dent. 2018;10:e591–7.

    Google Scholar 

  14. Dakshinamoorthy A, Singaravel Chidambaranathan A, Balasubramanium M. Evaluation of shear bond strength between maxillofacial silicone and fiber-reinforced composite resin after various surface treatments. J Prosthet Dent. 2018;119:1029.e1–e5.

    Article  Google Scholar 

  15. Nokar S, Bahrami M, Mostafavi AS. Comparative evaluation of the effect of different post and core materials on stress distribution in radicular dentin by three-dimensional finite element analysis. J Dent. 2018;15:69–78.

    Google Scholar 

  16. Pegoretti A, Fambri L, Zappini G, Bianchetti M. Finite element analysis of a glass fiber reinforced composite endodontic post. Biomaterials. 2002;23:2667–82.

    Article  CAS  Google Scholar 

  17. Farina AP, Weber AL, Severo Bde P, Souza MA, Cecchin D. Effect of length post and remaining root tissue on fracture resistance of fibre posts relined withresin composite. J Oral Rehabil. 2015;42:202–8.

    Article  CAS  Google Scholar 

  18. Romeed SA, Dunne SM, Madarati AA. The impact of fractured endodontic file removal on vertical root fracture resistance: three-dimensional finite element analysis. Eur J Prosthodont Restor Dent. 2012;20:86–91.

    CAS  Google Scholar 

  19. Assif D, Bitenski A, Pilo R, Oren E. Effect of post design on resistance to fracture of endodontically treated teeth with complete crowns. J Prosthet Dent. 1993;69:36–40.

    Article  CAS  Google Scholar 

  20. Liu M, Chen J, Hu X, Du Y, Xia Y, Gu N, et al. Enhanced properties of fiberglass-reinforced photocurable resin pile by introducing different fiberglass surface treatments and their biological evolution. Rsc Adv. 2015;5:69690–7.

    Article  CAS  Google Scholar 

  21. Luo N, Zhong H, Yang M, Yuan X, Fan Y. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane. J Environ Sci. 2016;39:208–17.

    Article  CAS  Google Scholar 

  22. Liu F, Wang R, Cheng Y, Jiang X, Zhang Q, Zhu M. Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties. Mater Sci Eng C Mater Biol Appl. 2013;33:4994–5000.

    Article  CAS  Google Scholar 

  23. Wang R, Bao S, Liu F, Jiang X, Zhang Q, Sun B, et al. Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers. Mater Sci Eng C Mater Biol Appl. 2013;33:4759–66.

    Article  CAS  Google Scholar 

  24. Wang R, Zhang M, Liu F, Bao S, Wu T, Jiang X, et al. Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Mater Sci Eng C Mater Biol Appl. 2015;50:266–73.

    Article  CAS  Google Scholar 

  25. Wolff D, Geiger S, Ding P, Staehle HJ, Frese C. Analysis of the interdiffusion of resin monomers into pre-polymerized fiber-reinforced composites. Dent Mater. 2012;28:541–7.

    Article  CAS  Google Scholar 

  26. Gonçalves F, Baaro LC, Miyazaki CL, Kawano Y, Braga RR. Influence of polymeric matrix on the physical and chemical properties of experimental composites. Braz Oral Res. 2015;29:1–7.

    Article  Google Scholar 

  27. Bahramian N, Atai M, Naimi-Jamal MR. Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: effect of fiber surface treatment on mechanical properties of the composites. Dent Mater. 2015;31:1022–9.

    Article  CAS  Google Scholar 

  28. Bocalon ACE, Mita D, Natale LC, Pfeifer CS, Braga RR. Polymerization stress of experimental composites containing random short glass fibers. Dent Mater. 2016;32:1079–84.

    Article  CAS  Google Scholar 

  29. Karbhari VM, Strassler H. Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dent Mater. 2007;23:960–8.

    Article  CAS  Google Scholar 

  30. Khan AS, Hussain AN, Sidra L, Sarfraz Z, Khalid H, Khan M, et al. abrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Mater Sci Enq C Mater Biol Appl. 2017;80:387–96.

    Article  CAS  Google Scholar 

  31. Ribeiro DA, Yujra VQ, DE Moura CFG, Handan BA, DE Barros Viana M, Yamauchi LY, et al. Genotoxicity induced by dental materials: a comprehensive review. Anticancer Res. 2017;37:4017–24.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Key Research and Development Program of China (2016YFA0201704/2016YFA0201700), the National Natural Science Foundation of China (81701025), Postdoctoral Foundation of Jiangsu (1701163B) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (2014–37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feimin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Mei Liu, Xiaokun Hu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, M., Ji, Y. et al. Enhanced mechanical properties and biosafety evaluation of surface-modified fiberglass-reinforced resin-based composite piles. J Mater Sci: Mater Med 30, 70 (2019). https://doi.org/10.1007/s10856-019-6269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6269-z

Navigation