Skip to main content

Advertisement

Log in

Hyaluronan/collagen hydrogel matrices containing high-sulfated hyaluronan microgels for regulating transforming growth factor-β1

  • Biomaterials Synthesis and Characterization
  • Rapid Communication
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hyaluronan (HA)-based microgels generated in a microfluidic approach, containing an artificial extracellular matrix composed of collagen and high-sulfated hyaluronan (sHA3), were incorporated into a HA/collagen-based hydrogel matrix. This significantly enhanced the retention of noncrosslinked sHA3 within the gels enabling controlled sHA3 presentation. Gels containing sHA3 bound higher amounts of transforming growth factor-β1 (TGF-β1) compared to pure HA/collagen hydrogels. Moreover, the presence of sHA3-containing microgels improved the TGF-β1 retention within the hydrogels. These findings are promising for developing innovative biomaterials with adjustable sHA3 release and growth factor interaction profiles to foster skin repair, e.g., by rebalancing dysregulated TGF-β1 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Scharnweber D, Hübner L, Rother S, Hempel U, Anderegg U, Samsonov SA, et al. Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials. J Mater Sci Mater Med. 2015;26:232.

    Article  Google Scholar 

  2. van der Smissen A, Samsonov S, Hintze V, Scharnweber D, Moeller S, Schnabelrauch M, et al. Artificial extracellular matrix composed of collagen I and highly sulfated hyaluronan interferes with TGFβ1 signaling and prevents TGFβ1-induced myofibroblast differentiation. Acta Biomater. 2013;9:7775–86.

    Article  Google Scholar 

  3. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  Google Scholar 

  4. Rother S, Galiazzo VD, Kilian D, Fiebig KM, Becher J, Moeller S, et al. Hyaluronan/collagen hydrogels with sulfated hyaluronan for improved repair of vascularized tissue tune the binding of proteins and promote endothelial cell growth. Macromol Biosci. 2017;17:1700154.

    Article  Google Scholar 

  5. Rother S, Salbach-Hirsch J, Möller S, Seemann T, Schnabelrauch M, Hofbauer LC, et al. Bioinspired Collagen/glycosaminoglycan-based cellular microenvironments for tuning osteoclastogenesis. ACS Appl Mater Interfaces. 2015;7:23787–97.

    Article  CAS  Google Scholar 

  6. Ma Y, Thiele J, Abdelmohsen L, Xu J, Huck W. Biocompatible macro-initiators controlling radical retention in microfluidic on-chip photo-polymerization of water-in-oil emulsions. Chem Commun. 2014;50:112–4.

    Article  Google Scholar 

  7. Chen MH, Chung JJ, Mealy JE, Zaman S, Li EC, Arisi MF, et al. Injectable supramolecular hydrogel/microgel composites for therapeutic delivery. Macromol Biosci. 2019;19:1–12.

    Article  Google Scholar 

  8. Hintze V, Moeller S, Schnabelrauch M, Bierbaum S, Viola M, Worch H, et al. Modifications of hyaluronan influence the interaction with human bone morphogenetic protein-4 (hBMP-4). Biomacromolecules. 2009;10:3290–7.

    Article  CAS  Google Scholar 

  9. Hauck N, Seixas N, Centeno S, Schlüßler R, Cojoc G, Müller P, et al. Droplet-assisted microfluidic fabrication and characterization of multifunctional polysaccharide microgels formed by multicomponent reactions. Polymers. 2018;10:1055.

    Article  Google Scholar 

  10. Miron A, Rother S, Huebner L, Hempel U, Käppler I, Moeller S, et al. Sulfated hyaluronan influences the formation of artificial extracellular matrices and the adhesion of osteogenic cells. Macromol Biosci. 2014;14:1783–94.

    Article  CAS  Google Scholar 

  11. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883:173–7.

    Article  CAS  Google Scholar 

  12. Song JM, Im JH, Kang JH, Kang DJ. A simple method for hyaluronic acid quantification in culture broth. Carbohydr Polym. 2009;78:633–4.

    Article  CAS  Google Scholar 

  13. Järvinen TAH, Ruoslahti E. Targeted antiscarring therapy for tissue injuries. Adv Wound Care. 2013;2:50–4.

    Article  Google Scholar 

  14. Hintze V, Miron A, Moeller S, Schnabelrauch M, Wiesmann H-P, Worch H, et al. Sulfated hyaluronan and chondroitin sulfate derivatives interact differently with human transforming growth factor-β1 (TGF-β1). Acta Biomater. 2012;8:2144–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 59307082 - TRR67 (subprojects A3, Z3). JT received financial support from the DFG (Research Training School GRK 1865, and TH2037/1) and JT thanks the Federal Ministry of Education and Research (BMBF, “Biotechnologie2020+Strukturvorhaben: Leibniz Research Cluster, 031A360C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Rother.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rother, S., Krönert, V., Hauck, N. et al. Hyaluronan/collagen hydrogel matrices containing high-sulfated hyaluronan microgels for regulating transforming growth factor-β1. J Mater Sci: Mater Med 30, 65 (2019). https://doi.org/10.1007/s10856-019-6267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6267-1

Navigation