Collagen-based bioinks for hard tissue engineering applications: a comprehensive review


In the last few years, additive manufacturing (AM) has been gaining great interest in the fabrication of complex structures for soft-to-hard tissues regeneration, with tailored porosity, and boosted structural, mechanical, and biological properties. 3D printing is one of the most known AM techniques in the field of biofabrication of tissues and organs. This technique opened up opportunities over the conventional ones, with the capability of creating replicable, customized, and functional structures that can ultimately promote effectively different tissues regeneration. The uppermost component of 3D printing is the bioink, i.e. a mixture of biomaterials that can also been laden with different cell types, and bioactive molecules. Important factors of the fabrication process include printing fidelity, stability, time, shear-thinning properties, mechanical strength and elasticity, as well as cell encapsulation and cell-compatible conditions. Collagen-based materials have been recognized as a promising choice to accomplish an ideal mimetic bioink for regeneration of several tissues with high cell-activating properties. This review presents the state-of-art of the current achievements on 3D printing using collagen-based materials for hard tissue engineering, particularly on the development of scaffolds for bone and cartilage repair/regeneration. The ultimate aim is to shed light on the requirements to successfully print collagen-based inks and the most relevant properties exhibited by the so fabricated scaffolds. In this regard, the adequate bioprinting parameters are addressed, as well as the main materials properties, namely physicochemical and mechanical properties, cell compatibility and commercial availability, covering hydrogels, microcarriers and decellularized matrix components. Furthermore, the fabrication of these bioinks with and without cells used in inkjet printing, laser-assisted printing, and direct in writing technologies are also overviewed. Finally, some future perspectives of novel bioinks are given.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Lode A, Meyer M, Bruggemeier S, Paul B, Baltzer H, Schropfer M, et al. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions. Biofabrication. 2016;8(1):015015.

    Article  Google Scholar 

  2. 2.

    Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci. 2018;93:45–111.

    Article  Google Scholar 

  3. 3.

    Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Compos Part B: Eng. 2017;110:442–58.

    CAS  Article  Google Scholar 

  4. 4.

    Nagarajan N, Dupret-Bories A, Karabulut E, Zorlutuna P, Vrana NE. Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnol Adv.2018;36:521–533.

    CAS  Article  Google Scholar 

  5. 5.

    Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies. Addit Manuf. 2017;13:179–200.

    CAS  Article  Google Scholar 

  6. 6.

    Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    CAS  Article  Google Scholar 

  7. 7.

    Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43.

    CAS  Article  Google Scholar 

  8. 8.

    Jose RR, Rodriguez MJ, Dixon TA, Omenetto F, Kaplan DL. Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater Sci Eng. 2016;2(10):1662–78.

    CAS  Article  Google Scholar 

  9. 9.

    Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002.

    Article  Google Scholar 

  10. 10.

    Kim YB, Lee H, Kim GH. Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a collagen/genipin-bioink and an optimal 3D printing. Process ACS Appl Mater Interfaces. 2016;8(47):32230–40.

    CAS  Article  Google Scholar 

  11. 11.

    Yeo MG, Kim GH. A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink. Biofabrication. 2017;9(2):025004.

    Article  Google Scholar 

  12. 12.

    Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020.

    Article  Google Scholar 

  13. 13.

    Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32(18):4205–10.

    CAS  Article  Google Scholar 

  14. 14.

    Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater. 2015;52:1–13.

    Article  Google Scholar 

  15. 15.

    Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Eng: C. 2018;84:140–7.

    CAS  Article  Google Scholar 

  16. 16.

    Echave MC, Sánchez P, Pedraz JL, Orive G. Progress of gelatin-based 3D approaches for bone regeneration. J Drug Deliv Sci Technol. 2017;42:63–74.

    CAS  Article  Google Scholar 

  17. 17.

    Silva TH, Moreira-Silva J, Marques ALP, Domingues A, Bayon Y, Reis RL. Marine origin collagens and its potential applications. Mar Drugs. 2014;12(12):5881–901.

    CAS  Article  Google Scholar 

  18. 18.

    San Antonio J, Persikov A, Stevens J, Jacenko O, Orgel J. Collagen biology meets medical device technology: current reality, future dreams. XXXIII IULTCS Congress November, 24–27th, 2015 Novo Hamburgo/Brazil.

  19. 19.

    Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

    CAS  Article  Google Scholar 

  20. 20.

    Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32(18):4205–10.

    CAS  Article  Google Scholar 

  21. 21.

    Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–80.

    CAS  Article  Google Scholar 

  22. 22.

    Lepowsky E, Muradoglu M, Tasoglu S. Towards preserving post-printing cell viability and improving the resolution: past. Bioprinting. 2018;11:e00034.

    Article  Google Scholar 

  23. 23.

    Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, et al. Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Adv Healthc Mater. 2017;6(12):1601451.

    Article  Google Scholar 

  24. 24.

    Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, et al. 3D bioprinting technologies for hard tissue and organ engineering. Materials. 2016;9(10):802.

    Article  Google Scholar 

  25. 25.

    Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol. 2017;5:23.

    Article  Google Scholar 

  26. 26.

    Wlodarczyk-Biegun MK, Del Campo A. 3D bioprinting of structural proteins. Biomaterials. 2017;134:180–201.

    CAS  Article  Google Scholar 

  27. 27.

    Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng. 2016;44(6):2090–102.

    Article  Google Scholar 

  28. 28.

    Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217–39.

    CAS  Article  Google Scholar 

  29. 29.

    Duarte Campos DF, Blaeser A, Korsten A, Neuss S, Jakel J, Vogt M, et al. The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Part A. 2015;21(3-4):740–56.

    CAS  Article  Google Scholar 

  30. 30.

    Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758.

    Article  Google Scholar 

  31. 31.

    Shim J-H, Jang K-M, Hahn SK, Park JY, Jung H, Oh K, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016;8(1):014102.

    Article  Google Scholar 

  32. 32.

    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30.

    CAS  Article  Google Scholar 

  33. 33.

    Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018;22:11.

  34. 34.

    Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88–106.

    CAS  Article  Google Scholar 

  35. 35.

    Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71.

    CAS  Article  Google Scholar 

  36. 36.

    Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods. 2012;18(1):33–44.

    CAS  Article  Google Scholar 

  37. 37.

    Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tiss Eng. 2004;10(9-10):1566–76.

    CAS  Article  Google Scholar 

  38. 38.

    Homenick CM, Gd Silveira, Sheardown H, Adronov A. Pluronics as crosslinking agents for collagen: novel amphiphilic hydrogels. Polym Int. 2011;60(3):458–65.

    CAS  Article  Google Scholar 

  39. 39.

    SeungHyun A, Young HoK, GeunHyung K. A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation. J Micromech Microeng. 2010;20(6):065015.

    Article  Google Scholar 

  40. 40.

    Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016;2(10):1800–05.

    CAS  Article  Google Scholar 

  41. 41.

    Diamantides N, Wang L, Pruiksma T, Siemiatkoski J, Dugopolski C, Shortkroff S, et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication. 2017;9(3):034102.

    Article  Google Scholar 

  42. 42.

    Shin K-H, Kim J-W, Koh Y-H, Kim H-E. Novel self-assembly-induced 3D plotting for macro/nano-porous collagen scaffolds comprised of nanofibrous collagen filaments. Mater Lett. 2015;143:265–68.

    CAS  Article  Google Scholar 

  43. 43.

    Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, et al. A new approach for fabricating collagen/ECM‐based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater. 2015;4(9):1359–68.

    CAS  Article  Google Scholar 

  44. 44.

    Di Giuseppe M, Law N, Webb B, Macrae RA, Liew LJ, Sercombe TB, et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;79:150–7.

    Article  Google Scholar 

  45. 45.

    Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 2016;34(5):394–407.

    CAS  Article  Google Scholar 

  46. 46.

    Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014;35(1):49–62.

    CAS  Article  Google Scholar 

  47. 47.

    Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 2015;7(4):045002

    Article  Google Scholar 

  48. 48.

    Oliveira SM, Reis RL, Mano JF. Towards the design of 3D multiscale instructive tissue engineering constructs: current approaches and trends. Biotechnol Adv. 2015;33(6 Pt 1):842–55.

    CAS  Article  Google Scholar 

  49. 49.

    Lee H, Kim Y, Kim S, Kim G. Mineralized biomimetic collagen/alginate/silica composite scaffolds fabricated by a low-temperature bio-plotting process for hard tissue regeneration: fabrication, characterisation and in vitro cellular activities. J Mater Chem B. 2014;2(35):5785–98.

    CAS  Article  Google Scholar 

  50. 50.

    Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, et al. A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater. 2015;4(9):1359–68.

    CAS  Article  Google Scholar 

  51. 51.

    Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 2015;11:233–46.

    CAS  Article  Google Scholar 

  52. 52.

    Kim W, Jang CH, Kim G. Optimally designed collagen/polycaprolactone biocomposites supplemented with controlled release of HA/TCP/rhBMP-2 and HA/TCP/PRP for hard tissue regeneration. Mater Sci Eng C, Mater Biol Appl. 2017;78:763–72.

    CAS  Article  Google Scholar 

  53. 53.

    Park JY, Choi JC, Shim JH, Lee JS, Park H, Kim SW, et al. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication. 2014;6(3):035004.

    Article  Google Scholar 

  54. 54.

    Shim JH, Jang KM, Hahn SK, Park JY, Jung H, Oh K, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016;8(1):014102.

    Article  Google Scholar 

  55. 55.

    Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C, Mater Biol Appl. 2018;83:195–201.

    CAS  Article  Google Scholar 

  56. 56.

    Kim WJ, Yun H-S, Kim GH. An innovative cell-laden α-TCP/collagen scaffold fabricated using a two-step printing process for potential application in regenerating hard tissues. Sci Rep. 2017;7:3181.

    Article  Google Scholar 

  57. 57.

    Du M, Chen B, Meng Q, Liu S, Zheng X, Zhang C, et al. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers. Biofabrication. 2015;7(4):044104.

    Article  Google Scholar 

  58. 58.

    Wenz A, Borchers K, Tovar GEM, Kluger PJ. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication. 2017;9(4):044103.

    Article  Google Scholar 

  59. 59.

    Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, Khoshroo K, Tahriri M, Bastami F, et al. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent Mater. 2017;33(11):1205–16.

    CAS  Article  Google Scholar 

  60. 60.

    Lee J, Yeo M, Kim W, Koo Y, Kim GH. Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure. Int J Biol Macromol. 2018;110:497–503.

    CAS  Article  Google Scholar 

  61. 61.

    Giuseppe MD, Law N, Webb B, AM R, Liew LJ, Sercombe TB, et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;79:150–7.

    Article  Google Scholar 

  62. 62.

    Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep. 2016;6:24474.

    Article  Google Scholar 

  63. 63.

    Duarte Campos DF, Blaeser A, Buellesbach K, Sen KS, Xun W, Tillmann W, et al. Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater. 2016;5(11):1336–45.

    CAS  Article  Google Scholar 

  64. 64.

    Lin KF, He S, Song Y, Wang CM, Gao Y, Li JQ, et al. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone. Regen ACS Appl Mater Interfaces. 2016;8(11):6905–16.

    CAS  Article  Google Scholar 

Download references


Financial support from the European Union Seventh Framework Programme (FP7/2007–2013) through grant agreement ERC-2012-ADG 20120216-321266 (ERC Advanced Grant ComplexiTE), from the Portuguese Foundation for Science and Technology (FCT) to the BiogenInk project (M-ERA-NET2/0022/2016) and from North of Portugal Regional Operational Programme (NORTE 2020) to the projects FROnTHERA (NORTE-01-0145-FEDER-000023) and NORTE-08-5369-F SE-000044, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), is greatly acknowledged. The authors are grateful for the FCT distinction attributed to J.M.O. (IF/01285/2015).

Author information



Corresponding author

Correspondence to T. H. Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, C.F., Diogo, G.S., Pina, S. et al. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J Mater Sci: Mater Med 30, 32 (2019).

Download citation