A novel lidocaine hydrochloride mucoadhesive films for periodontal diseases

  • María Pleguezuelos-VillaEmail author
  • Amparo Nácher
  • María Jesús Hernández
  • M. A. Ofelia Vila Busó
  • María Barrachina
  • Nuria Peñalver
  • Octavio Díez-Sales
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


Periodontal diseases are inflammatory disorders caused primarily by dental plaque microorganisms that even may need surgery to remove damaged tissue. Adhesive biocompatible films may be an adequate form in order to improve drug retention or prevent microbial infections by covering the surgical site. In recent years, much attention has been focused on biocompatible inexpensive polymers, for biomedical and pharmaceutical potential applications. The objective of this research is the development of a film for mucosal application containing lidocaine hydrochloride (5%, w/w) as anesthetic drug. Lidocaine films were prepared with three biopolymers: hydroxypropylmethylcellulose (HPMC), chitosan (CH), or xanthan gum (XG). Their thickness and uniformity content were characterized. Rheological behavior of the hydrated films was studied using flow curves, creep and recovery tests and dynamic oscillatory measurements with a rheometer. The mucoadhesive assays were carried out with cheeks of Wistar rat using a universal tensile tester to know their adhesiveness. Finally, lidocaine delivery through the films was investigated in Franz cells. All films (n = 3 for each polymer) showed flexibility, a drug content of 0.015 ± 0.001 g/cm2 and a thickness of 0.25 ± 0.01 mm. The results of the maximum detachment force in tensile tests and work adhesion indicated that XG is the polymer that showed greater power of mucoadhesion (p < 0.05). These properties show a good correlation with the rheological characteristics. In all cases, the lidocaine amount released at 30 min is around 4 mg/cm2. This amount could be considered sufficient to guarantee the anesthetic effect.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Albandar JM. Epidemiology and risk factors of periodontal diseases. Dent Clin N Am. 2005;49:517–32.CrossRefGoogle Scholar
  2. 2.
    Silk H. Diseases of the mouth. Prim Care Clin Off Pract. 2014;41:75–90.CrossRefGoogle Scholar
  3. 3.
    Cummins D, Creeth JE. Delivery of antiplaque agents from dentifrices, gels, and mouth washes. J Dent Res. 1992;71:1439–49.CrossRefGoogle Scholar
  4. 4.
    Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:25–34.CrossRefGoogle Scholar
  5. 5.
    Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech. 2017;1;18:3–14.CrossRefGoogle Scholar
  6. 6.
    Martin P, Hopkinson-Wooley J, McClusky J. Growth factors and cutaneous wound repair. Prog Growth Factor Res. 1992;4:25–34.CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Padula C, Pozzetti L, Traversone V, Nicoli S, Santi P. In vitro evaluation of mucoadhesive films for gingival administration of lidocaine. AAPS PharmSciTech. 2013;14:1279–83.CrossRefGoogle Scholar
  10. 10.
    Cheung RandyChiFai, Ng TziBun, Wong JackHo, Chan WaiYee. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13:5156–86.CrossRefGoogle Scholar
  11. 11.
    Elizalde-Peña EA, Zarate-Triviño DG, Nuño-Donlucas SM, Medina-Torres L, Gough JE, Sanchez IC, et al. Synthesis and characterization of a hybrid (chitosan-g-glycidyl methacrylate)–xanthan hydrogel. J Biomater Sci Polym Ed. 2013;24:1426–42.CrossRefGoogle Scholar
  12. 12.
    Bebawy LI, Elghobashy MR, Abbas SS, Shokry RF. Chromatographic determination of aminoacridine hydrochloride, lidocaine hydrochloride and lidocaine toxic impurity in oral gel. J Chromatogr Sci. 2016;54:492–9.CrossRefGoogle Scholar
  13. 13.
    Corrias F, Dolz M, Herraez M, Diez-Sales O. Rheological properties of progesterone microemulsions: influence of xanthan and chitosan biopolymer concentration. J Appl Polym Sci. 2008;110:1225–35.CrossRefGoogle Scholar
  14. 14.
    Mura C, Nácher A, Merino V, Merino-Sanjuan M, Carda C, Ruiz A, Manconi M, Loy G, Fadda AM, Díez-Sales O. N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: In vivo study with TNBS-induced colitis model in rats. Int J Pharm. 2011;416:145–54.Google Scholar
  15. 15.
    Siepmann J, Peppas N. Mathematical modeling of controlled drug delivery. Adv Drug Del Rev. 2001;48:137.CrossRefGoogle Scholar
  16. 16.
    Mezger TG. The rheology handbook. 4th ed. Hanover: Vincentz Network; 2014.Google Scholar
  17. 17.
    Sittikijyothin W, Torres D, Gonçalves MP. Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohyd Polym. 2005;59:339–50.CrossRefGoogle Scholar
  18. 18.
    Barnes HA. A handbook of elementary rheology. Aberystwyth: University of Wales, Institute of Non-Newtonian Fluid Mechanics; 2000.Google Scholar
  19. 19.
    Korhonen M, Lehtonen J, Hellen L, Hirvonen J, Yliruusi J. Rheological properties of three component creams containing sorbitan monoesters as surfactants. Int J Pharm. 2002;247:103–14. 24.CrossRefGoogle Scholar
  20. 20.
    Dolz M, Corrias F, Díez-Sales O, Casanovas A, Hernández MJ. Influence of test times on creep and recovery behavior of xanthan gum hydrogels. Appl Rheol. 2009;19:34201–8.Google Scholar
  21. 21.
    Remuñán-López C, Portero A, Vila-Jato JL, Alonso MJ. Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. J Control Release. 1998;55:143–52.CrossRefGoogle Scholar
  22. 22.
    Casanovas A, Herraez M, Diez-Sales O, Dolz M, Hernández MJ. Rheological characterization of chitosan matrices: influence of biopolymer concentration. J Appl Polym Sci. 2007;105:2121–8.CrossRefGoogle Scholar
  23. 23.
    Xu Fen, Hu Honghai, Liu Qiannan, Dai Xiaofeng, Zhang Hong. Rheological and microstructural properties of wheat flour dough systems added with potato granules. Int J Food Prop. 2017;20:1145–57.CrossRefGoogle Scholar
  24. 24.
    Njintang NY, Mbofung CMF, Moates GK, Parker ML, Faulds CB, Craig F, Smith AC, Waldron KW. Functional properties of five varieties of taro flour, and relationship to creep recovery and sensory characteristics of achu (taro-based paste). J Food Eng. 2007;82:114–20.CrossRefGoogle Scholar
  25. 25.
    Na Nafee, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive delivery systems. II. Formulation and in-vitro/in-vivo evaluation of buccal mucoadhesive tablets containing water-soluble drugs. Drug Dev Ind Pharm. 2004;30:995–1004.CrossRefGoogle Scholar
  26. 26.
    Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57:1666–91.CrossRefGoogle Scholar
  27. 27.
    Akilbekova D, Shaimerdenova M, Adilov S, Berillo D. Biocompatible scaffolds based on natural polymers for regenerative medicine. Int J Biol Macromol. 2018;114:324–33.CrossRefGoogle Scholar
  28. 28.
    Koffi AA, Agnely F, Besnard M, Kablan Brou J, Grossiord JL, Ponchel G. In vitro and in vivo characteristics of a thermogelling and bioadhesive delivery system intended for rectal administration of quinine in children. Eur J Pharm Biopharm. 2008;69:167–75.CrossRefGoogle Scholar
  29. 29.
    Mughal MA, Iqbal Z, Neau SH. Guar gum, xanthan gum, and HPMC can define release mechanisms and sustain release of propranolol hydrochloride. AAPS PharmSciTech. 2011;12:77–87.CrossRefGoogle Scholar
  30. 30.
    Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11:748–64.CrossRefGoogle Scholar
  31. 31.
    Bhardwaj TR, Kanwar M, Lal R, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm. 2000;26:1025–38.CrossRefGoogle Scholar
  32. 32.
    Rowe DJ, Weyant R. Power toothbrushes may reduce plaque gingivitis at least as effectively as manual toothbrushing. J Evid Based Dent Pract. 2005;5:139–40.CrossRefGoogle Scholar
  33. 33.
    Carafa M, Marianecci C, Di Marzio L, Rinaldi F, Meo C, Matricardi P. A new vesicle-loaded hydrogel system suitable for topical applications: preparation and characterization. J Pharm Sci. 2011;14:336–46.Google Scholar
  34. 34.
    Shiledar RR, Tagalpallewar AA, Kokare CR. Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan. Carbohydr Polym. 2014;101:1234–42.CrossRefGoogle Scholar
  35. 35.
    Ceulemans J, Vinckier I, Ludwig A. The use of xanthan gum in an ophthalmic liquid dosage form: rheological characterization of the interaction with mucin. J Pharm Sci. 2002;91:1117–27.CrossRefGoogle Scholar
  36. 36.
    Bhowmik M, Kumari P, Sarkar G, Bain MK, Bhowmick B, Mollick MM. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int J Biol Macromol. 2013;62:117–23.CrossRefGoogle Scholar
  37. 37.
    Vermani K, Garg S, Zaneveld Lourens JD. Assemblies for in vitro measurement of bioadhesive strength and retention characteristics in simulated vaginal environment. Drug Dev Ind Pharm.2004;28(9):995–1004.Google Scholar
  38. 38.
    Andrew GP, Laverty TP, Jones DS. Mucoadhesive polymer platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71:505.CrossRefGoogle Scholar
  39. 39.
    List T, Mojir K, Svensson P, Pigg M. A new protocol to evaluate the effect of topical anesthesia. Anesth Prog. 2014;61:135–44.CrossRefGoogle Scholar
  40. 40.
    Luo C, Yang Q, Lin X, Qi C, Li G. Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres. Int J Biol Macromol. 2019;15:721–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • María Pleguezuelos-Villa
    • 1
    Email author
  • Amparo Nácher
    • 1
    • 2
  • María Jesús Hernández
    • 3
  • M. A. Ofelia Vila Busó
    • 4
  • María Barrachina
    • 1
  • Nuria Peñalver
    • 1
  • Octavio Díez-Sales
    • 1
    • 2
  1. 1.Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of PharmacyUniversity of ValenciaValenciaSpain
  2. 2.Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de ValènciaUniversitat deValènciaValenciaSpain
  3. 3.Department of Earth Physics and Thermodynamics, Faculty of PhysicsUniversity of ValenciaValenciaSpain
  4. 4.Department of Physical Chemistry, Faculty of PharmacyUniversity of ValenciaValenciaSpain

Personalised recommendations