Biofabrication of vessel-like structures with alginate di-aldehyde—gelatin (ADA-GEL) bioink


One of the key challenges in the field of blood vessel engineering is the in vitro production of small and large diameter vessels. Considering that a combination of alginate di-aldehyde and gelatin (ADA-GEL) has been successfully applied for different biofabrication approaches, the aim of this study was to exploit ADA-GEL for the fabrication of vessel structures with diameters up to 4 mm. To explore plotting possibilities and to study the swelling behaviour, a library of vessel-like constructs with different diameters made from 2, 3 and 4% (w/v) alginate was created by using various hand-crafted double-needle extrusion systems. Vessel diameters were varied through changes of the double-needle core and outer diameters. A straightforward model for the production of vessel of different diameters from a variety of double-needle systems was established and vessel-constructs with diameters of up to 3.7 mm could be created. It was successfully demonstrated that an artificial vessel, consisting of an outer layer of 7.5% ADA50-GEL50 and an inner core of 3% gelatin, can support the proliferation and migration of an immobilized co-culture containing fibroblast (NHDF) and endothelial (HUVEC) cells. The openness and tightness of the hollow ADA-GEL structures were further confirmed by a dye injection test. Nanoindentation was performed to determine the Young’s modulus of the used materials. Cell vitality was proved after 1, 2 and 3 weeks of incubation. The results showed a nearly twofold increase of viable cells per week. Fluorescent images confirmed cell migration during the whole incubation time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Langer R, Vacanti J. Tissue engineering. Science. 1993;260:920–6.

    CAS  Article  Google Scholar 

  2. 2.

    Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63:300–11.

    CAS  Article  Google Scholar 

  3. 3.

    WHO (2018). The top 10 causes of death: World Heal Organ. Accessed on 17 Jan 2018.

  4. 4.

    Cicha I, Detsch R, Singh R, Reakasame S, Alexiou C, Boccaccini AR. Biofabrication of vessel grafts based on natural hydrogels. Curr Opin Biomed Eng. 2017;2:83–89.

    Article  Google Scholar 

  5. 5.

    Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regen Med. 2010;5:107–20.

    CAS  Article  Google Scholar 

  6. 6.

    Head SJ, Kieser TM, Falk V, Huysmans HA, Kappetein AP. Coronary artery bypass grafting: part 1—the evolution over the first 50 years. Eur Heart J. 2013;34:2862–72.

    Article  Google Scholar 

  7. 7.

    Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89:957–89.

    CAS  Article  Google Scholar 

  8. 8.

    Jani B. Ageing and vascular ageing. Postgrad Med J. 2006;82:357–62.

    CAS  Article  Google Scholar 

  9. 9.

    Dahl SLM, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y. et al. Readily available tissue-engineered vascular grafts. Sci Transl Med. 2011;3:68ra9–68ra9.

    CAS  Article  Google Scholar 

  10. 10.

    Anatomie Blutgefäße (2017). Accessed on 24 Oct 2017.

  11. 11.

    Aird WC. Phenotypic heterogeneity of the endothelium: I. structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    CAS  Article  Google Scholar 

  12. 12.

    Aird WC. Phenotypic heterogeneity of the endothelium: II. representative vascular beds. Circ Res. 2007;100:174–90.

    CAS  Article  Google Scholar 

  13. 13.

    Nicolay N, Antwerpes F, Steudler U (2017). Tunica Adventitia. DocCheck. on 5 Sept 2017.

  14. 14.

    van den Berg F. Angewandte Physiologie: Band 1. Georg Thieme Verla; Stuttgart, Germany, 2003.

  15. 15.

    Kucukgul C, Ozler B, Karakas HE, Gozuacik D, Koc B. 3D hybrid bioprinting of macrovascular structures. Procedia Eng. 2013;59:183–92.

    Article  Google Scholar 

  16. 16.

    Singh R, Sarker B, Silva R, Detsch R, Dietel B, Alexiou C. et al. Evaluation of hydrogel matrices for vessel bioplotting: vascular cell growth and viability. J Biomed Mater Res Part A. 2016;104:577–85.

    CAS  Article  Google Scholar 

  17. 17.

    Jungst T, Smolan W, Schacht K. et al. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2015;

    Article  Google Scholar 

  18. 18.

    Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    CAS  Article  Google Scholar 

  19. 19.

    Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33:3279–305.

    CAS  Article  Google Scholar 

  20. 20.

    Boanini E, Rubini K, Panzavolta S, Bigi A. Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomater. 2010;6:383–8.

    CAS  Article  Google Scholar 

  21. 21.

    Detsch R, Sarker B, Zehnder T, Frank G, Boccaccini AR. Advanced alginate-based hydrogels. Mater Today. 2015;18:590–1.

    Article  Google Scholar 

  22. 22.

    Yang J-S, Xie Y-J, He W. Research progress on chemical modification of alginate: a review. Carbohydr Polym. 2011;84:33–9.

    CAS  Article  Google Scholar 

  23. 23.

    Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M. et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B. 2014;2:1470.

    CAS  Article  Google Scholar 

  24. 24.

    Boontheekul T, Kong H-J, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–65.

    CAS  Article  Google Scholar 

  25. 25.

    Kong H. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003;24:4023–9.

    CAS  Article  Google Scholar 

  26. 26.

    Rowley Ja, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.

    CAS  Article  Google Scholar 

  27. 27.

    Biswal D, Anupriya B, Uvanesh K, Anis A, Banerjee I, Pal K. Effect of mechanical and electrical behavior of gelatin hydrogels on drug release and cell proliferation. J Mech Behav Biomed Mater. 2015;53:174–86.

    CAS  Article  Google Scholar 

  28. 28.

    Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules. 2018;19:3–21.

    CAS  Article  Google Scholar 

  29. 29.

    Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Mater (Basel). 2013;6:1285–309.

    CAS  Article  Google Scholar 

  30. 30.

    Manju S, Muraleedharan CV, Rajeev A, Jayakrishnan A, Joseph R. Evaluation of alginate dialdehyde cross-linked gelatin hydrogel as a biodegradable sealant for polyester vascular graft. J Biomed Mater Res B Appl Biomater. 2011;98 B:139–49.

    CAS  Article  Google Scholar 

  31. 31.

    George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114:1–14.

    CAS  Article  Google Scholar 

  32. 32.

    Nguyen T-P, Lee B-T. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. J Biomater Appl. 2012;27:311–21.

    Article  Google Scholar 

  33. 33.

    Zehnder T, Boccaccini AR, Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix. Biofabrication. 2017;9:025016.

    CAS  Article  Google Scholar 

  34. 34.

    Ivanovska J, Zehnder T, Lennert P, Sarker B, Boccaccini AR, Hartmann A. et al. Biofabrication of 3D alginate-based hydrogel for cancer research: comparison of cell spreading, viability, and adhesion characteristics of colorectal HCT116 tumor cells. Tissue Eng Part C Methods. 2016;22:708–15.

    CAS  Article  Google Scholar 

  35. 35.

    Zehnder T, Sarker B, Boccaccini AR, Detsch R. Evaluation of an alginate–gelatine crosslinked hydrogel for bioplotting. Biofabrication. 2015;7:25001.

    CAS  Article  Google Scholar 

  36. 36.

    Sarker B, Singh R, Silva R, Roether JA, Kaschta J, Detsch R. et al. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One. 2014;9:e107952.

    CAS  Article  Google Scholar 

  37. 37.

    Sarker B. advanced hydrogels concepts based on combinations of alginate, gelatin and bioactive glasses for tissue engineering. 2015. PhD thesis, Friedrich-Alexander University Erlangen-Nuremberg.

  38. 38.

    Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater. 2013;2:777–83.

    CAS  Article  Google Scholar 

  39. 39.

    Cicha I, Goppelt-Struebe M, Muehlich S, Yilmaz A, Raaz D, Daniel WG. et al. Pharmacological inhibition of RhoA signaling prevents connective tissue growth factor induction in endothelial cells exposed to non-uniform shear stress. Atherosclerosis. 2008;196:136–45.

    CAS  Article  Google Scholar 

  40. 40.

    Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008;9:446–54.

    CAS  Article  Google Scholar 

  41. 41.

    Yu Y, Zhang Y, Martin Ja, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng. 2013;135:91011.

    Article  Google Scholar 

  42. 42.

    Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5:326–33.

    CAS  Article  Google Scholar 

  43. 43.

    Cicha I, Singh R, Garlichs CD, Alexiou C. Nano-biomaterials for cardiovascular applications: clinical perspective. J Control Release. 2016;229:23–36.

    CAS  Article  Google Scholar 

  44. 44.

    Nair K, Gandhi M, Khalil S, Chang Yan K, Marcolongo M, Barbee K. et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4:1168–77.

    CAS  Article  Google Scholar 

  45. 45.

    Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:35020.

    CAS  Article  Google Scholar 

  46. 46.

    Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A. 2008;14:41–48.

    CAS  Article  Google Scholar 

  47. 47.

    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.

    CAS  Article  Google Scholar 

  48. 48.

    Mih JD, Sharif AS, Liu F, Marinkovic A, Symer MM, Tschumperlin DJ. A multiwell platform for studying stiffness-dependent cell biology. PLoS One. 2011;6:e19929.

    CAS  Article  Google Scholar 

  49. 49.

    Saunders RL, Hammer Da. Assembly of human umbilical vein endothelial cells on compliant hydrogels. Cell Mol Bioeng. 2010;3:60–67.

    CAS  Article  Google Scholar 

  50. 50.

    Yeh Y-T, Hur SS, Chang J, Wang KC, Chiu JJ, Li YS, Chien S. Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One. 2012;7:e46889.

    CAS  Article  Google Scholar 

  51. 51.

    Costa-Almeida R, Gomez-Lazaro M, Ramalho C, Granja PL, Soares R, Guerreiro SG. Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Eng Part A. 2015;21:1055–65.

    CAS  Article  Google Scholar 

  52. 52.

    Sorrell JM, Baber MA, Caplan AI. A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells. Cells Tissues Organs. 2007;186:157–68.

    Article  Google Scholar 

  53. 53.

    Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M. et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials. 2010;31:3903–9.

    CAS  Article  Google Scholar 

Download references


This work was supported by the German Research Foundation (DFG) within the collaborative research center TRR225 (project Nr. 326998133) (subprojects A01 and B06). Furthermore, this work was technically supported by Dr. Raminder Singh and PD Dr. Iwona Cicha from the Translational Research Center (TRC) of the University Medical Centre Erlangen. The authors would also like to thank Dr. T. Zehnder for his help with the used hydrogels and Ms. A. Grünewald for cell culturing.

Author information



Corresponding author

Correspondence to A. R. Boccaccini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruther, F., Distler, T., Boccaccini, A.R. et al. Biofabrication of vessel-like structures with alginate di-aldehyde—gelatin (ADA-GEL) bioink. J Mater Sci: Mater Med 30, 8 (2019).

Download citation