Skip to main content
Log in

Fabrication of P(NIPAAm-co-AAm) coated optical-magnetic quantum dots/silica core-shell nanocomposites for temperature triggered drug release, bioimaging and in vivo tumor inhibition

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

ZnS:Mn2+ quantum dots (QDs) Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) core-shell-shell nanocomposites have been successfully fabricated by free radical polymerization method. The average diameter and LCST of ZnS:Mn2+ QDs Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) (NIPAAm:AAm=90:10) nanocomposites was about 200 nm and 41.1°. It possessed a strong yellow-orange emission peak centered at 589 nm from the Mn2+ 4T1-6A1 transition and the desired superparamagnetic property at room temperature. The DOX encapsulation efficiency and loading capacity was 88% and 15.3 wt%, respectively. The nanocomposites showed the faster drug release behavior at 43 °C than that at 25 °C in vitro release experiment, and exhibited no significant cytotoxicity against the HeLa, HepG2 and HEK293 cell lines. Red fluorescence was observed in the cytoplasm of HeLa cells, confirming its application for biolabeling. Effective tumor inhibition was realized in vivo without the induction of toxicity in mice.

ZnS:Mn2+ (QDs) Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) nanocomposites showed the red fluorescence in the cytoplasm of HeLa cells, faster drug release behavior at 43 °C than that at 25 °C in vitro, and effective tumor inhibition in vivo, confirming its application for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991

    Article  CAS  Google Scholar 

  2. Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696

    Article  CAS  Google Scholar 

  3. Li M, Liu X, Xu Z, Yeung KWK, Wu S. Dopamine modified organic-inorganic hybrid coating for antimicrobial and osteogenesis. ACS Appl Mater Interfaces. 2016;8:33972

    Article  CAS  Google Scholar 

  4. Timin AS, Gao H, Voronin DV, Gorin DA, Sukhorukov GB. Inorganic/organic multilayer capsule composition for improved functionality and external triggering. Adv Mater Interfaces. 2017;4:1600338

    Article  Google Scholar 

  5. Rezaei SJT, Nabid MR, Niknejad H, Entezami AA. Multifunctional and thermoresponsive unimolecular micelles for tumor-targeted delivery and sitespecificallyrelease of anticancer drugs. Polym (Guildf). 2012;53:3485

    Article  Google Scholar 

  6. Yang X, Luo Y, Xu F, Chen Y. Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: Effect of hydrophilic chain length and camptothecin release behavior. Pharm Res. 2014;31:291

    Article  CAS  Google Scholar 

  7. Karg M, Hellweg T. New “smart” poly (NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface. 2009;14:438

    Article  CAS  Google Scholar 

  8. Fan T, Li M, Wu X, Li M, Wu Y. Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Colloid Surf B. 2011;88:593

    Article  CAS  Google Scholar 

  9. Liu G, Hu D, Chen M, Wang C, Wu L. Multifunctional PNIPAM/Fe3O4-ZnS hybrid hollow spheres: Synthesis, characterization, and properties. J Colloid Interf Sci. 2013;397:73

    Article  CAS  Google Scholar 

  10. Chen Y, Chen HR, Shi JL. In vivo bio‐safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25:3144

    Article  CAS  Google Scholar 

  11. Vallet-Regí M, Montserrat C, Blanca G. Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev. 2011;40:596

    Article  Google Scholar 

  12. Zhou H, Wang X, Tang J, Yang YW. Surface immobilization of pH-responsive polymer brushes on mesoporous silica nanoparticles by enzyme mimetic catalytic ATRP for controlled cargo release. Polymers. 2016;8:277

    Article  Google Scholar 

  13. Junior JAO, Abuçafy MP, Manaia EB, da Silva BL, Chiari-Andréo BG, Chiavacci LA. Drug delivery systems obtained from silica based organic-inorganic hybrids. Polymers. 2016;8:91

    Article  Google Scholar 

  14. Dong L, Peng H, Wang S, Zhang Z, Li J, Ai F, Zhao Q, Luo M, Xiong H, Chen L. Thermally and magnetically dual‐responsive mesoporous silica nanospheres: preparation, characterization, and properties for the controlled release of sophoridine. J Appl Polym Sci. 2014;131:40477

    Google Scholar 

  15. Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science. 2006;314:964

    Article  Google Scholar 

  16. Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song IC, Moon W K, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed. 2008;47:8438

    Article  CAS  Google Scholar 

  17. Mu X, Zhang F, Kong C, Zhang H, Zhang W, Ge R, Liu Y, Jiang J. EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. Int J Nanomed. 2017;12:2899

    Article  CAS  Google Scholar 

  18. Xu Y, Karmakar A, Wang D, Mahmood MW, Watanabe F, Zhang Y, Fejleh A, Fejleh P, Li Z, Kannarpady G, Ali S, Biris AR, Biris AS. Multifunctional Fe3O4 cored magnetic-quantum dot fluorescent nanocomposites for RF nanohyperthermia of cancer cells. J Phys Chem C. 2010;114:5020

    Article  CAS  Google Scholar 

  19. Jiang P, Yang X, Xin Y, Qi Y, Ma X, Li Q, Zhang Z. Facile synthesis of water-soluble and superparamagnetic Fe3O4 dots through a polyol-hydrolysis route. J Mater Sci. 2013;48:2365

    Article  CAS  Google Scholar 

  20. Han D, Cao J, Yang S, Yang J, Wang B, Fan L, Liu Q, Wang T, Niu H. Investigation of composition dependent structural and optical properties of the Zn1-xCdxS, coaxial Zn0.99-xCdx Cu0.01S/ZnS, Zn0.99-xCdxMn0.01S nanorods generated by a one-step hydrothermal process. Dalton Trans. 2014;43:11019

    Article  CAS  Google Scholar 

  21. Cao J, Niu H, Han D, Yang S, Liu Q, Wang T, Yang J. Biocompatible ZnS:Mn2+ quantum dots/SiO nanocomposites as fluorescent probe for imaging HeLa cell. J Mater Sci: Mater Med. 2015;26:236

    Google Scholar 

  22. Gu HW, Zheng RK, Zhang XX, Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc. 2004;126:5664

    Article  CAS  Google Scholar 

  23. Wang DS, He JB, Rosenzweig N, Rosenzweig Z. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett. 2004;4:409

    Article  CAS  Google Scholar 

  24. Lami EB, Farzi GA, David L, Putaux JL, McKenna TFL. Silica encapsulation by miniemulsion polymerization: distribution and localization of the silica particles in droplets and latex particles. Langmuir. 2012;28:6021

    Article  Google Scholar 

  25. Ni KF, Shan GR, Weng ZX, Othman NS, Fevotte G, Lefebvre F, Lami EBourgeat. Synthesis of hybrid core-shell nanoparticles by emulsion (co) polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules. 2005;38:7321

    Article  CAS  Google Scholar 

  26. Wang X, Zhuang J, Peng Q, Li YD. A general strategy for nanocrystal synthesis. Nature. 2005;437:121

    Article  CAS  Google Scholar 

  27. Song YY, Cao XB, Guo Y, Chen P, Zhao QR, Shen GZ. Fabrication of mesoporous CdTe/ZnO@SiO2 core/shell nanostructures with tunable dual emission and ultrasensitive fluorescence response to metal ions. Chem Mater. 2009;21:68

    Article  CAS  Google Scholar 

  28. Lin X, Tang D, Yu Z, Feng Q. Stimuli-responsive electrospun nanofibers from poly (N-isopropylacrylamide)-co-poly (acrylic acid) copolymer and polyurethane. J Mater Chem B. 2014;2:651

    Article  CAS  Google Scholar 

  29. Peng WQ, Qu SC, Cong GW, Zhang XQ, Wang ZG. Optical and magnetic properties of ZnS nanoparticles doped with Mn2+. J Cryst Growth. 2005;282:179

    Article  CAS  Google Scholar 

  30. Su J, Cao M, Ren L, Hu C. Fe2O3-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C. 2011;115:14469

    Article  CAS  Google Scholar 

  31. Qin Y, Chen J, Bi Y, Xu X, Zhou H, Gao J, Hu Y, Zhao Y, Chai Z. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomater. 2015;17:201

    Article  CAS  Google Scholar 

  32. Nagireddy NR, Yallapu MM, Kokkarachedu V, Sakey R, Kanikireddy V, Alias JP, Konduru MR. Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction . J Polym Res. 2011;18:2285

    Article  CAS  Google Scholar 

  33. Tai X, Ma Jh, Du Z, Wang W, Wu J. A simple method for synthesis of thermal responsive silica nanoparticle/PNIPAAm hybrids. Powder Technol. 2013;233:47

    Article  CAS  Google Scholar 

  34. Effati Elham, Pourabbas Behzad. Synthesis of core-shell poly (N-isopropylacrylamide) grafted silica nanoparticles by distillation precipitation polymerization . Powder Technol. 2013;246:473

    Article  CAS  Google Scholar 

  35. Hu J, Chen M, Tian H, Deng W. Preparation and pyrolysis characteristics of PNIPAM-grafted SiO2 hollow spheres loading vitamin C. RSC Adv. 2015;5:81134

    Article  CAS  Google Scholar 

  36. Dehghan M, Motaharinejad A, Saadat M, Ahdenov R, Babazadeh M, Khanmiri RH. Novel approach to synthesizing polymer-functionalized Fe3O4/SiO2-NH via an ultrasound-assisted method for catalytic selective oxidation of alcohols to aldehydes and ketones in a DMSO/water mixture. RSC Adv. 2015;5:92335

    Article  CAS  Google Scholar 

  37. Cao J, Han DL, Wang BJ, Fan L, Fu H, Wei MB, Feng B, Liu XY, Yang JH. Low temperature synthesis, photoluminescence, magnetic properties of the transition metal doped wurtzite ZnS nanowires. J. Solid State Chem. 2013;200:317

    Article  CAS  Google Scholar 

  38. Sooklal K, Cullum BS, Angel SM, Murphy CJ. Photophysical properties of ZnS nanoclusters with spatially localized Mn2+. J Phys Chem. 1996;100:4551

    Article  CAS  Google Scholar 

  39. Limaye MV, Gokhale S, Acharya SA, Kulkarni SK. Template-free ZnS nanorod synthesis by microwave irradiation. Nanotechnology. 2008;19:415602

    Article  Google Scholar 

  40. Hu PA, Liu YQ, Fu L, Cao LC, Zhu DB. Self-assembled growth of ZnS nanobelt networks. J Phys Chem B. 2004;108:936

    Article  CAS  Google Scholar 

  41. Li ZP, Liu BB, Li XL, Yu SD, Wang L, Hou YY, Zou YG, Yao MG, Li QJ, Zou B. Synthesis of ZnS nanocrystals with controllable structure and morphology and their photoluminescence property. Nanotechnology. 2007;18:255602

    Article  Google Scholar 

  42. Cao J, Wang BJ, Han D, Yang S, Yang J, Wei M, Fan L, Liu Q, Wang T. Effects of surface modification and SiO2 thickness on the optical and superparamagnetic properties of the water-soluble ZnS:Mn2+ nanowires/Fe3O4 quantum dots/SiO2 heterostructures. CrystEngComm. 2013;15:6971

    Article  CAS  Google Scholar 

  43. Song O, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc. 2004;126:6164

    Article  CAS  Google Scholar 

  44. Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ, Yan ZG, Yan CH, Zheng K, Zhang Z, Takano M, Hayashi N, Eltschka M, Kläui M, Rüdiger U, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Tzvetkov G, Raabe J. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc. 2008;130:16968

    Article  CAS  Google Scholar 

  45. Hu H, Wang Z, Pan L, Zhao S, Zhu S. Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C. 2010;114:7738

    Article  CAS  Google Scholar 

  46. Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release. 2006;115:46

    Article  CAS  Google Scholar 

  47. Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release. 1998;53:119

    Article  CAS  Google Scholar 

  48. Su J, Cao M, Ren L, Hu C. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C. 2011;115:14469

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Programs for High Technology Research and Development of China (863) (Item No.2013AA032202), the National Key Research and Development Program of China (Grant Nos. 2017YFF0108607), the National Natural Science Foundation of China (Nos. 61705079, 21576111, 61475063), program for the development of Science and Technology of Jilin province (Nos. 20150101180JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Yang or Jinghai Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Niu, H., Du, J. et al. Fabrication of P(NIPAAm-co-AAm) coated optical-magnetic quantum dots/silica core-shell nanocomposites for temperature triggered drug release, bioimaging and in vivo tumor inhibition. J Mater Sci: Mater Med 29, 169 (2018). https://doi.org/10.1007/s10856-018-6179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6179-5

Navigation