Skip to main content

Advertisement

Log in

Enhanced corrosion resistance and cytocompatibility of biomimetic hyaluronic acid functionalised silane coating on AZ31 Mg alloy for orthopaedic applications

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper reports the corrosion resistant and cytocompatible properties of the hyaluronic acid-silane coating on AZ31 Mg alloy. In this study, the osteoinductive properties of high molecular weight hyaluronic acid (HA, 1–4 MDa) and the corrosion protection of silane coatings were incorporated as a composite coating on biodegradable AZ31 Mg alloy for orthopaedic applications. The multi-step fabrication of coatings first involved dip coating of a passivated AZ31 Mg alloy with a methyltriethoxysilane-tetraethoxysilane sol-gel to deposit a dense, cross-linked and corrosion resistant silane coating (AZ31-MT). The second step was to create an amine-functionalised surface by treating coated alloy with 3-aminopropyl-triethoxy silane (AZ31-MT-A) which facilitated the immobilisation of HA via EDC-NHS coupling reactions at two different concentrations i.e 1 mg.ml−1 (AZ31-MT-A-HA1) and 2 mg.ml−1 (AZ31-MT-A-HA2). These coatings were characterised by Fourier transform infrared spectroscopy, atomic force microscopy and static contact angle measurements which confirmed the successful assembly of the full coatings onto AZ31 Mg alloy. The influence of HA-silane coating on the corrosion of Mg alloy was investigated by electrical impedance spectroscopy and long-term immersion studies measurements in HEPES buffered DMEM. The results showed an enhanced corrosion resistance of HA functionalised silane coated AZ31 substrate over the uncoated equivalent alloy. Furthermore, the cytocompatibility of MC3T3-E1 osteoblasts was evaluated on HA-coated AZ31-MT-A substrates by live-dead staining, quantification of total cellular DNA content, scanning electron microscope and alkaline phosphatase activity. The results showed HA concentration-dependent improvement of osteoblast cellular response in terms of enhanced cell adhesion, proliferation and differentiation. These findings hold great promise in employing such biomimetic multifunctional coatings to improve the corrosion resistance and cytocompatibility of biodegradable Mg-based alloy for orthopaedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–8. https://doi.org/10.1016/j.biomaterials.2005.07.037.

    Article  CAS  Google Scholar 

  2. Walker J, Shadanbaz S, Woodfield TBF, Staiger MP, Dias GJ. Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res - Part B Appl Biomater. 2014;102:1316–31. https://doi.org/10.1002/jbm.b.33113.

    Article  Google Scholar 

  3. Sanchez AHM, Luthringer BJC, Feyerabend F, Willumeit R. Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015;13:16–31. https://doi.org/10.1016/j.actbio.2014.11.048.

    Article  CAS  Google Scholar 

  4. Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 2011;7:1452–9. https://doi.org/10.1016/j.actbio.2010.12.004.

    Article  CAS  Google Scholar 

  5. Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C. 2016;68:948–63. https://doi.org/10.1016/j.msec.2016.06.020.

    Article  CAS  Google Scholar 

  6. Whelan M, Cassidy J, Duffy B. Sol-gel sealing characteristics for corrosion resistance of anodised aluminium. Surf Coat Technol. 2013;235:86–96. https://doi.org/10.1016/j.surfcoat.2013.07.018.

    Article  CAS  Google Scholar 

  7. Song J, Ooij WJVan. Bonding and corrosion protection mechanisms of γ-APS and BTSE silane films on aluminum substrates. J Adhes Sci Technol. 2003;17:2191–21. https://doi.org/10.1163/156856103772150788.

    Article  CAS  Google Scholar 

  8. Shalabi MM, Wolke JGC, Cuijpers VMJI, Jansen Ja. Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography. J Mater Sci Mater Med. 2007;18:2033–9. https://doi.org/10.1007/s10856-007-3160-0.

    Article  CAS  Google Scholar 

  9. Agarwal S, Morshed M, Labour MN, Hoey D, Duffy B, Curtin J et al. Enhanced corrosion protection and biocompatibility of a PLGA–silane coating on AZ31 Mg alloy for orthopaedic applications. RSC Adv. 2016;6:113871–83. https://doi.org/10.1039/C6RA24382G.

    Article  CAS  Google Scholar 

  10. Gu XN, Li N, Zheng YF, Ruan L. In vitro degradation performance and biological response of a Mg-Zn-Zr alloy. Mater Sci Eng B Solid-State Mater Adv Technol. 2011;176:1778–84. https://doi.org/10.1016/j.mseb.2011.05.032.

    Article  CAS  Google Scholar 

  11. Zhao N, Wang X, Qin L, Guo Z, Li D. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro. Biochem Biophys Res Commun. 2015;465:569–74. https://doi.org/10.1016/j.bbrc.2015.08.061.

    Article  CAS  Google Scholar 

  12. Kunjukunju S, Roy A, Ramanathan M, Lee B, Candiello JE, Kumta PN. A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 2013;9:8690–703. https://doi.org/10.1016/j.actbio.2013.05.013.

    Article  CAS  Google Scholar 

  13. D’Sa RA, Dickinson PJ, Raj J, Pierscionek BK, Meenan BJ. Inhibition of lens epithelial cell growth via immobilisation of hyaluronic acid on atmospheric pressure plasma modified polystyrene. Soft Matter. 2011;7:608–17. https://doi.org/10.1039/C0SM00936A.

    Article  Google Scholar 

  14. Takahashi T, Ikegami-Kawai M, Okuda R, Suzuki K. A fluorimetric Morgan-Elson assay method for hyaluronidase activity. Anal Biochem. 2003;322:257–63. https://doi.org/10.1016/j.ab.2003.08.005.

    Article  CAS  Google Scholar 

  15. Homayun B, Afshar A. Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials. J Alloy Compd. 2014;607:1–10. https://doi.org/10.1016/j.jallcom.2014.04.059.

    Article  CAS  Google Scholar 

  16. Bobe K, Willbold E, Morgenthal I, Andersen O, Studnitzky T, Nellesen J et al. In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater. 2013;9:8611–23. https://doi.org/10.1016/j.actbio.2013.03.035.

    Article  CAS  Google Scholar 

  17. Chou DT, Hong D, Saha P, Ferrero J, Lee B, Tan Z et al. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Acta Biomater. 2013;9:8518–33. https://doi.org/10.1016/j.actbio.2013.06.025.

    Article  CAS  Google Scholar 

  18. Pandey M, Kapila R, Kapila S. Osteoanabolic activity of whey-derived anti-oxidative (MHIRL and YVEEL) and angiotensin-converting enzyme inhibitory (YLLF, ALPMHIR, IPA and WLAHK) bioactive peptides. Peptides. 2018;99:1–7. https://doi.org/10.1016/j.peptides.2017.11.004.

    Article  CAS  Google Scholar 

  19. Majoul N, Aouida S, Bessaïs B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl Surf Sci. 2015;331:388–91. https://doi.org/10.1016/j.apsusc.2015.01.107.

    Article  CAS  Google Scholar 

  20. Almeida PV, Shahbazi M-A, Mäkilä E, Kaasalainen M, Salonen J, Hirvonen J et al.Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale. 2014;6:10377–87.https://doi.org/10.1039/c4nr02187h.

    Article  CAS  Google Scholar 

  21. Liu X, Huang R, Su R, Qi W, Wang L, He Z. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl Mater Interfaces. 2014;6:13034–42. https://doi.org/10.1021/am502921z.

    Article  CAS  Google Scholar 

  22. King AD, Birbilis N, Scully JR. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim Acta. 2014;121:394–406. https://doi.org/10.1016/j.electacta.2013.12.124.

    Article  CAS  Google Scholar 

  23. Srinivasan A, Shin KS, Rajendran N. Influence of bicarbonate concentration on the conversion layer formation onto AZ31 magnesium alloy and its electrochemical corrosion behaviour in simulated body fluid. RSC Adv. 2016;6:49910–22. https://doi.org/10.1039/C6RA08478H.

    Article  CAS  Google Scholar 

  24. Weeks A, Boone A, Luensmann D, Jones L, Sheardown H. The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials. J Biomater Appl. 2012;28:323–33. https://doi.org/10.1177/0885328212446936.

    Article  Google Scholar 

  25. Liu X, Yue Z, Romeo T, Weber J, Scheuermann T, Moulton S. et al. Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 2013;9:8671–7. https://doi.org/10.1016/j.actbio.2012.12.025.

    Article  CAS  Google Scholar 

  26. Jamesh M, Kumar S, Narayanan TSNS. Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J Coat Technol Res. 2012;9:495–502. https://doi.org/10.1007/s11998-011-9382-6.

    Article  CAS  Google Scholar 

  27. Dezfuli SN, Huan Z, Mol JMC, Leeflang MA, Chang J, Zhou J. Influence of HEPES buffer on the local pH and formation of surface layer during in vitro degradation tests of magnesium in DMEM. Prog Nat Sci Mater Int. 2014;24:531–8. https://doi.org/10.1016/j.pnsc.2014.08.009.

    Article  Google Scholar 

  28. Kawano M, Ariyoshi W, Iwanaga K, Okinaga T, Habu M, Yoshioka I et al. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid. Biochem Biophys Res Commun. 2011;405:575–80. https://doi.org/10.1016/j.bbrc.2011.01.071.

    Article  CAS  Google Scholar 

  29. Chua PH, Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29:1412–21. https://doi.org/10.1016/j.biomaterials.2007.12.019.

    Article  CAS  Google Scholar 

  30. Hu X, Neoh KG, Shi Z, Kang ET, Poh C, Wang W. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials. 2010;31:8854–63. https://doi.org/10.1016/j.biomaterials.2010.08.006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dublin Institute of Technology for the financial support through Fiosraigh Scholarship Programme 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarna Jaiswal.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Labour, MN., Hoey, D. et al. Enhanced corrosion resistance and cytocompatibility of biomimetic hyaluronic acid functionalised silane coating on AZ31 Mg alloy for orthopaedic applications. J Mater Sci: Mater Med 29, 144 (2018). https://doi.org/10.1007/s10856-018-6150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6150-5

Navigation