Skip to main content

Advertisement

Log in

Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fabricating novel materials for biomedical applications mostly require the use of biodegradable materials. In this work biodegradable materials like polylactic acid (PLA) and chitosan (CHS) were used for designing electrospun mats. This work reports the physical and chemical characterization of the PLA–CHS composite, prepared by the electrospinning technique using a mixed solvent system. The addition of chitosan into PLA, offered decrease in fiber diameter in the composites with uniformity in the distribution of fibers with an optimum at 0.4wt% CHS. The fiber formation and the reduction in fiber diameter were confirmed by the SEM micrograph. The inverse gas chromatography and contact angle measurements supported the increase of hydrophobicity of the composite membrane with increase of filler concentration. The weak interaction between PLA and chitosan was confirmed by Fourier transform infrared spectroscopy and thermal analysis. The stability of the composite was established by zeta potential measurements. Cytotoxicity studies of the membranes were also carried out and found that up to 0.6% CHS the composite material was noncytotoxic. The current findings are very important for the design and development of new materials based on polylactic acid-chitosan composites for environmental and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2:307–44.

    Article  CAS  Google Scholar 

  2. Adeosun SO, Lawal GI, Balogun SA, Akpan EI. Review of green polymer nanocomposites. J Miner Mater Charact Eng. 2012;11:385.

    Google Scholar 

  3. Stevens ES. Green plastics: an introduction to the new science of biodegradable plastics. Binghamton: Princeton University Press; 2002.

  4. Kulkarni Vishakha S, Butte Kishor D, Rathod Sudha S. Natural polymers–A comprehensive review. Int J Res Pharm Biomed Sci. 2012;3:1579–613.

    Google Scholar 

  5. Grujic R, Vukic M, Gojkovic V. Application of biopolymers in the food industry. In: Pellicer E, Nikolic D, Sort J, Baró M, Zivic F, Grujovic N, et al, editors. Advances in applications of industrial biomaterials. Cham: Springer; 2017. p. 103–19.

  6. Azeredo HM, Rosa MF, Mattoso LH. Nanocellulose in bio-based food packaging applications. Ind Crops Prod. 2017;97:664–71.

    Article  CAS  Google Scholar 

  7. Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol. 2015;6:834.

    Article  Google Scholar 

  8. Kas HS. Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul. 1997;14:689–711.

    Article  CAS  Google Scholar 

  9. Sangeetha Y, Meenakshi S, SairamSundaram C. Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium) propyl chitosan chloride as inhibitor on mild steel. Int J Biol Macromol. 2015;72:1244–9.

    Article  CAS  Google Scholar 

  10. Riedel U, Nickel J. Natural fibre‐reinforced biopolymers as construction materials–new discoveries. Die Angew Makromol Chem. 1999;272:34–40.

    Article  CAS  Google Scholar 

  11. Thoen J, Busch R. Industrial chemicals from biomass–Industrial concepts. In: Birgit Kamm, Patrick R Gruber, Michael Kamm, editors. Biorefineries-industrial processes and products: status quo and future directions. Wiley-VCH Verlag GmbH, Weinheim; 2006, p. 347–65.

  12. Aeschelmann F, Carus M. Biobased building blocks and polymers in the world: capacities, production, and applications–status quo and trends towards 2020. Ind Biotechnol. 2015;11:154–9.

    Article  Google Scholar 

  13. Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27:4894–903.

    Article  CAS  Google Scholar 

  14. Henton DE, Gruber P, Lunt J, Randall J. Polylactic acid technology. Nat Fibers Biopolym biocomposites. 2005;16:527–77.

    Google Scholar 

  15. Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L. Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Ind Crops Prod. 2015;67:439–47.

    Article  CAS  Google Scholar 

  16. McCarthy CW, Ahrens DC, Joda D, Curtis TE, Bowen PK, Guillory RJ, et al. Fabrication and short-term in vivo performance of a natural elastic lamina–polymeric hybrid vascular graft. ACS Appl Mater Interfaces. 2015;7:16202–12.

    Article  CAS  Google Scholar 

  17. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30:321–8.

    Article  CAS  Google Scholar 

  18. Sakai R, John B, Okamoto M, Seppälä JV, Vaithilingam J, Hussein H, et al. Fabrication of polylactide‐based biodegradable thermoset scaffolds for tissue engineering applications. Macromol Mater Eng. 2013;298:45–52.

    Article  CAS  Google Scholar 

  19. Li G, Wang ZX, Fu WJ, Hong BF, Wang XX, Cao L, et al. Introduction to biodegradable polylactic acid ureteral stent application for treatment of ureteral war injury. BJU Int. 2011;108:901–6.

    Google Scholar 

  20. Yong SK, Shrivastava M, Srivastava P, Kunhikrishnan A, Bolan N. Environmental applications of chitosan and its derivatives. Rev Environ Contam Toxicol. 2015;233:1–43.

  21. Kumar PS, Srinivasan S, Lakshmanan VK, Tamura H, Nair SV, Jayakumar R. β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym. 2011;85:584–91.

    Article  Google Scholar 

  22. Kavitha K, Keerthi TS, Mani TT. Chitosan polymer used as carrier in various pharmaceutical formulations: brief review. Int J Appl Biol Pharm Techol. 2011;2:249–58.

    Google Scholar 

  23. Wan AC, Tai BC. CHITIN—a promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv. 2013;31:1776–85.

    Article  CAS  Google Scholar 

  24. Yang TL. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci. 2011;12:1936–63.

    Article  CAS  Google Scholar 

  25. Bartley J. Should chitosan and tranexamic acid be combined for improved hemostasis after sinus surgery? Med Hypotheses. 2013;81:1036–8.

    Article  CAS  Google Scholar 

  26. Bojar W, Kucharska M, Ciach T, Koperski Ł, Jastrzębski Z, Szałwiński M. Bone regeneration potential of the new chitosan-based alloplastic biomaterial. J Biomater Appl. 2014;28:1060–8.

    Article  Google Scholar 

  27. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  CAS  Google Scholar 

  28. Tomaszewski W, Szadkowski M. Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibres Text East Eur. 2005;13:22.

    Google Scholar 

  29. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25:1600–5.

    Article  CAS  Google Scholar 

  30. Kriegel C, Kit KM, McClements DJ, Weiss J. Influence of surfactant type and concentration on electrospinning of chitosan–poly (ethylene oxide) blend nanofibers. Food Biophys. 2009;4:213–28.

    Article  Google Scholar 

  31. Au HT, Pham LN, Vu TH, Park JS. Fabrication of an antibacterial non-woven mat of a poly (lactic acid)/chitosan blend by electrospinning. Macromol Res. 2012;20:51–58.

    Article  CAS  Google Scholar 

  32. Van der Schueren L, De Meyer T, Steyaert I. et al. Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohydr Polym. 2013;91:284–93.

    Article  CAS  Google Scholar 

  33. Sundaramurthi D, Vasanthan KS, Kuppan P, Krishnan UM, Sethuraman S. Electrospun nanostructured chitosan–poly (vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomed Mater. 2012;7:045005.

    Article  Google Scholar 

  34. Sonseca A, Peponi L, Sahuquillo O, Kenny JM, Giménez E. Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: study on the morphology, crystallinity structure and thermal stability. Polym Degrad Stab. 2012;97:2052–9.

    Article  CAS  Google Scholar 

  35. Xu C, Yang F, Wang S, Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res A. 2004;71:154–61.

    Article  Google Scholar 

  36. Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002;35:8456–66.

    Article  CAS  Google Scholar 

  37. Kim GM, Michler GH, Pötschke P. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polym (Guildf). 2005;46:7346–51.

    Article  CAS  Google Scholar 

  38. Zheng J, Zhang H, Zhao Z, Han CC. Construction of hierarchical structures by electrospinning or electrospraying. Polym (Guildf). 2012;53:546–54.

    Article  CAS  Google Scholar 

  39. Augustine R, Kalarikkal N, Thomas S. An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications. Tissue Eng Regen Med. 2015;12:12–19.

    Article  CAS  Google Scholar 

  40. Yang T, Wu D, Lu L, Zhou W, Zhang M. Electrospinning of polylactide and its composites with carbon nanotubes. Polym Compos. 2011;32:1280–8.

    Article  CAS  Google Scholar 

  41. Zhao R, Li X, Sun B, Zhang Y, Zhang D, Tang Z, et al. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol. 2014;68:92–97.

    Article  CAS  Google Scholar 

  42. Furukawa T, Sato H, Murakami R, Zhang J, Duan YX, Noda I, et al. Structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (L-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Macromolecules. 2005;38:6445–54.

    Article  CAS  Google Scholar 

  43. Chu Z, Zhao T, Li L, Fan J, Qin Y. Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials. 2017;10:659.

    Article  Google Scholar 

  44. Morán JI, Alvarez VA, Cyras VP, Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 2008;15:149–59.

    Article  Google Scholar 

  45. Mofokeng JP, Luyt AS, Tábi T, Kovács J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J Thermoplast Compos Mater. 2012;25:927–48.

    Article  CAS  Google Scholar 

  46. Haafiz MM, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym. 2013;98:139–45.

    Article  CAS  Google Scholar 

  47. Xu J, Zhang J, Gao W, Liang H, Wang H, Li J. Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater Lett. 2009;63:658–60.

    Article  CAS  Google Scholar 

  48. Cordeiro N, Gouveia C, Moraes AG, Amico SC. Natural fibers characterization by inverse gas chromatography. Carbohydr Polym. 2011;84:110–7.

    Article  CAS  Google Scholar 

  49. Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose. 2015;22:1075–90.

    Article  CAS  Google Scholar 

  50. Deepa B, Abraham E, Pothan LA, Cordeiro N, Faria M, Thomas S. Biodegradable nanocomposite films based on sodium alginate and cellulose nanofibrils. Materials. 2016;9:50.

    Article  Google Scholar 

  51. Hanaor D, Michelazzi M, Leonelli C, Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc. 2012;32:235–44.

    Article  CAS  Google Scholar 

  52. Han D, Steckl AJ. Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir. 2009;25:9454–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Council for Scientific and Industrial Research (CSIR) Government of India and University Grants Commission for the financial funding for this research by giving Junior Research Fellowship. We thank Dr. Jayakumar Rangasamy for his valuable advices regarding zeta potential measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laly A. Pothen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, M.S., Pillai, P.K.S., Faria, M. et al. Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. J Mater Sci: Mater Med 29, 137 (2018). https://doi.org/10.1007/s10856-018-6146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6146-1

Navigation