Skip to main content
Log in

Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the field of nerve tissue engineering, nanofibrous scaffolds could be a promising candidate when they are incorporated with electrical cues. Unique physico-chemical properties of gold nanoparticles (AuNPs) make them an appropriate component for increasing the conductivity of scaffolds to enhance the electrical signal transfer between neural cells. The aim of this study was fabrication of AuNPs-doped nanofibrous scaffolds for peripheral nerve tissue engineering. Polycaprolactone (PCL)/chitosan mixtures with different concentrations of chitosan (0.5, 1 and 1.5) were electrospun to obtain nanofibrous scaffolds. AuNPs were synthesized by the reduction of HAuCl4 using chitosan as a reducing/stabilizing agent. A uniform distribution of AuNPs with spherical shape was achieved throughout the PCL/chitosan matrix. The UV–Vis spectrum revealed that the amount of gold ions absorbed by nanofibrous scaffolds is in direct relationship with their chitosan content. Evaluation of electrical property showed that inclusion of AuNPs significantly enhanced the conductivity of scaffolds. Finally, after 5 days of culture, biological response of Schwann cells on the AuNPs-doped scaffolds was superior to that on as-prepared scaffolds in terms of improved cell attachment and higher proliferation. It can be concluded that the prepared AuNPs-doped scaffolds can be used to promote peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xie J, MacEwan MR, Liu W, Jesuraj N, Li X, Hunter D, et al. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces. 2014;6:9472–80.

    Article  CAS  Google Scholar 

  2. Evans GR. Challenges to nerve regeneration. Semin Surg Oncol. 2000;19:312–318.

    Article  CAS  Google Scholar 

  3. Verreck G, Chun I, Li Y, Kataria R, Zhang Q, Rosenblatt J, et al. Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials. 2005;26:1307–15.

    Article  CAS  Google Scholar 

  4. Bhatheja K, Field J. Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol. 2006;38:1995–9.

    Article  CAS  Google Scholar 

  5. Gordon T, Udina E, Verge VM, de Chaves EI. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Mot Control. 2009;13:412–41.

    Article  Google Scholar 

  6. Ming G, Henley J, Tessier-Lavigne M, Song H, Poo M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron. 2001;29:441–52.

    Article  CAS  Google Scholar 

  7. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005;5:1107–10.

    Article  CAS  Google Scholar 

  8. Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng. 2011;112:501–7.

    Article  CAS  Google Scholar 

  9. Baniasadi H, AR SA, Mashayekhan. S. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol. 2015;74:360–6.

    Article  CAS  Google Scholar 

  10. Khosroshahi ME, Hassannejad Z, Firouzi M, Arshi AR. Nanoshell-mediated targeted photothermal therapy of HER2 human breast cancer cells using pulsed and continuous wave lasers: an in vitro study. Lasers Med Sci. 2015;30:1913–22.

    Article  Google Scholar 

  11. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomed. 2015;10:321–41.

    Article  CAS  Google Scholar 

  12. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–15.

    Article  CAS  Google Scholar 

  13. McKeon‐Fischer K, Freeman J. Characterization of electrospun poly (L‐lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering. J Tissue Eng Regen Med. 2011;5:560–8.

    Article  Google Scholar 

  14. Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T. Nanoengineering gold particle composite fibers for cardiac tissue engineering. J Mater Chem B. 2013;1:5210–7.

    Article  CAS  Google Scholar 

  15. Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, et al. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B. 2014;2:1584–93.

    Article  CAS  Google Scholar 

  16. Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res. 2004;339:2627–31.

    Article  CAS  Google Scholar 

  17. Esumi K, Hosoya T, Suzuki A, Torigoe K. Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine)dendrimers. Langmuir. 2000;16:2978–80.

    Article  CAS  Google Scholar 

  18. Fujiwara K, Ramesh A, Maki T, Hasegawa H, Ueda K. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater. 2007;146:39–50.

    Article  CAS  Google Scholar 

  19. Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, et al. Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. Biomacromolecules. 2006;7:1203–9.

    Article  CAS  Google Scholar 

  20. Van der Schueren L, Steyaert I, De Schoenmaker B, De Clerck K. Polycaprolactone/chitosan blend nanofibers electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym. 2012;88:1221–6.

    Article  Google Scholar 

  21. Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules. 2006;7:2710–4.

    Article  CAS  Google Scholar 

  22. Almodovar J, Kipper MJ. Coating electrospun chitosan nanofibers with polyelectrolyte multilayers using the polysaccharides heparin and N,N,N-trimethyl chitosan. Macromol Biosci. 2011;11:72–6.

    Article  CAS  Google Scholar 

  23. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials. 2005;26:7616–27.

    Article  CAS  Google Scholar 

  24. Amaral IF, Unger RE, Fuchs S, Mendonca AM, Sousa SR, Barbosa MA, et al. Fibronectin-mediated endothelialisation of chitosan porous matrices. Biomaterials. 2009;30:5465–75.

    Article  CAS  Google Scholar 

  25. Francisco Peirano AR, Flores JA. Adsorption of gold ions by chitosan biopolymer. Soc Quim Del Peru. 2003;69:211–21.

    Google Scholar 

  26. Pauw LJvd. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech Rev. 1958;20:220–4.

    Google Scholar 

  27. Rajabi M, Firouzi M, Hassannejad Z, Haririan I, Zahedi P. Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly(ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration. J Biomed Mater Res. 2017. https://doi.org/10.1002/jbm.b.33968.

    Article  Google Scholar 

  28. Nategh M, Firouzi M, Naji-Tehrani M, Oryadi Zanjani L, Hassannejad Z, Nabian MH, et al. Subarachnoid space transplantation of Schwann and/or olfactory ensheathing cells following severe spinal cord injury fails to improve locomotor recovery in rats. Acta Med Iran. 2016;54:562–9.

    Google Scholar 

  29. Hassannejad Z, Khosroshahi ME. Synthesis and evaluation of time dependent optical properties of plasmonic–magnetic nanoparticles. Opt Mater. 2013;35:644–51.

    Article  CAS  Google Scholar 

  30. Cheng M, Wang H, Zhang Z, Li N, Fang X, Xu S. Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform. ACS Appl Mater Interfaces. 2014;6:1569–75.

    Article  CAS  Google Scholar 

  31. Cohen-Karni T, Jeong KJ, Tsui JH, Reznor G, Mustata M, Wanunu M, et al. Nanocomposite gold-silk nanofibers. Nano Lett. 2012;12:5403–6.

    Article  CAS  Google Scholar 

  32. Fang X, Ma H, Xiao S, Shen M, Guo R, Cao X, et al. Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. J Mater Chem. 2011;21:4493–501.

    Article  CAS  Google Scholar 

  33. Miyama T, Yonezawa Y. Aggregation of photolytic gold nanoparticles at the surface of chitosan films. Langmuir ACS J Surf Colloids. 2004;20:5918–23.

    Article  CAS  Google Scholar 

  34. Adlim A, Bakar MA. Preparation of chitosan-gold nanoparticles: part 2. The roles of chitosan. Indo J Chem. 2010;8:320–6.

    Google Scholar 

  35. Yahyaei B, Manafi S, Fahimi B, Arabzadeh S, Pourali P. Production of electrospun polyvinyl alcohol/microbial synthesized silver nanoparticles scaffold for the treatment of fungating wounds. Appl Nanosci. 2018;8:417–426.

    Article  CAS  Google Scholar 

  36. Hong Kyung H. Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polym Eng Sci. 2006;47:43–49.

    Article  Google Scholar 

  37. Wan Y, Creber KAM, Peppley B, Bui VT. Ionic conductivity of chitosan membranes. Polymer. 2003;44:1057–65.

    Article  CAS  Google Scholar 

  38. Slupkowski T. Electrical conductivity of polyester polymer containing carbon black. Phys Status Solid A. 1985;90:737–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Tehran University of Medical Sciences, Tehran, Iran (No. 97-01-84-38323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Hassannejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saderi, N., Rajabi, M., Akbari, B. et al. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J Mater Sci: Mater Med 29, 134 (2018). https://doi.org/10.1007/s10856-018-6144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6144-3

Navigation