Skip to main content

Biological performance of a promising Kefiran-biopolymer with potential in regenerative medicine applications: a comparative study with hyaluronic acid

Abstract

Kefiran from kefir grains, an exopolysaccharide (EPS) produced by lactic acid bacteria (LAB), has received an increasing interest because of its safe status. This natural biopolymer is a water-soluble glucogalactan with probed health-promoting properties. However, its biological performance has yet to be completely recognized and properly exploited. This research was carried out to evaluate the in vitro antioxidant and the in vitro anti-inflammatory properties of Kefiran biopolymer. Regarding antioxidant activity, the results demonstrated that the Kefiran extract possessed the strongest reducing power and superoxide radical scavenging, over hyaluronic acid (HA, gold standard viscosupplementation treatment). This exopolysaccharide showed a distinct antioxidant performance in the majority of in vitro working mechanisms of antioxidant activity comparing to HA. Moreover, Kefiran presented an interesting capacity to scavenge nitric oxide radical comparing to the gold standard that did not present any potency. Finally, the cytotoxic effects of Kefiran extracts on hASCs were also performed and demonstrated no cytotoxic response, ability to improve cellular function of hASCs. This study demonstrated that Kefiran represented a great scavenger for reactive oxygen and nitrogen species and showed also that it could be an excellent candidate to promote tissue repair and regeneration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Zhang W, Ouyang H, Dass CR, Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016;4:15040 https://doi.org/10.1038/boneres.2015.40.

    CAS  Article  Google Scholar 

  2. 2.

    Ondresik M, Maia FRA, Morais AD, Gertrudes AC, Bacelar AHD, Correia C, et al. Management of knee osteoarthritis. Current status and future trends. Biotechnol Bioeng. 2017;114(4):717–39. https://doi.org/10.1002/bit.26182.

    CAS  Article  Google Scholar 

  3. 3.

    Mushtaq S, Choudhary R, Scanzello CR. Non-surgical treatment of osteoarthritis-related pain in the elderly. Curr Rev Musculoskelet Med. 2011;4(3):113–22. https://doi.org/10.1007/s12178-011-9084-9.

    Article  Google Scholar 

  4. 4.

    Kristjansson B, Honsawek S. Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int. 2014. 2014:1-13. Artn 194318 https://doi.org/10.1155/2014/194318.

  5. 5.

    Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA. 2015;112(47):14452–9. https://doi.org/10.1073/pnas.1508520112.

    CAS  Article  Google Scholar 

  6. 6.

    Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: recent innovations and the transition to translation. Tissue Eng Part B Rev. 2013;19(1):1–13. https://doi.org/10.1089/ten.TEB.2012.0723.

    CAS  Article  Google Scholar 

  7. 7.

    Edgar L, McNamara K, Wong T, Tamburrini R, Katari R, Orlando G. Heterogeneity of scaffold biomaterials in tissue engineering. materials (Basel). 2016;9(5):332–353. https://doi.org/10.3390/ma9050332.

  8. 8.

    El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316–42. https://doi.org/10.5339/gcsp.2013.38.

    Article  Google Scholar 

  9. 9.

    Prestwich GD. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release. 2011;155(2):193–9. https://doi.org/10.1016/J.Jconrel.2011.04.007.

    CAS  Article  Google Scholar 

  10. 10.

    Borzacchiello A, Russo L, Malle BM, Schwach-Abdellaoui K, Ambrosio L. Hyaluronic acid based hydrogels for regenerative medicine applications. Biomed Res Int. 2015;2015:871218 https://doi.org/10.1155/2015/871218.

    Article  Google Scholar 

  11. 11.

    Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9(7):7081–92. https://doi.org/10.1016/j.actbio.2013.03.005.

    CAS  Article  Google Scholar 

  12. 12.

    Elsayed EA, Farooq M, Dailin D, El-Enshasy HA, Othman NZ, Malek R, et al. In vitro and in vivo biological screening of kefiran polysaccharide produced by Lactobacillus kefiranofaciens. Biomed Res-India. 2017;28(2):594–600.

    CAS  Google Scholar 

  13. 13.

    Kooiman P. The chemical structure of kefiran, the water-soluble polysaccharide of the kefir grain. Carbohydr Res. 1968;7:200–1. https://doi.org/10.1016/S0008-6215(00)81138-6.

    CAS  Article  Google Scholar 

  14. 14.

    de Oliveira Leite AM, Miguel MA, Peixoto RS, Rosado AS, Silva JT, Paschoalin VM. Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz J Microbiol. 2013;44(2):341–9. https://doi.org/10.1590/S1517-83822013000200001.

    Article  Google Scholar 

  15. 15.

    Manoto SL, Maepa MJ, Motaung SK. Medical ozone therapy as a potential treatment modality for regeneration of damaged articular cartilage in osteoarthritis. Saudi. J of Biol Sci. 2018;25(4):672–79. https://doi.org/10.1016/j.sjbs.2016.02.002.

    CAS  Article  Google Scholar 

  16. 16.

    Radhouani H, Gonçalves C, Oliveira JM, Reis RL. Kefiran for use in regenerative medicine and/ortissue engineering. A4TEC - Association for the advancement of tissue engineering and cell basedtechnologies & therapies. 2018; WO/2018/042405.

  17. 17.

    Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg & Med Chem Lett. 2006;16:2441–5. https://doi.org/10.1016/j.bmcl.2006.01.076.

    CAS  Article  Google Scholar 

  18. 18.

    Singhal M, Ratra P. Antioxidant activity, total flavonoid and total phenolic content of musa acuminate peel extracts. Glob J Pharmacol. 2013;7(2):118–22.

    CAS  Google Scholar 

  19. 19.

    El SN, Karakaya S. Radical scavenging and iron-chelating activities of some greens used as traditional dishes in Mediterranean diet. Int J Food Sci Nutr. 2004;55(1):67–74. https://doi.org/10.1080/09637480310001642501.

    Article  Google Scholar 

  20. 20.

    Nagai T, Nagashima T, Suzuki N, Inoue R. Antioxidant activity and angiotensin I-converting enzyme inhibition by enzymatic hydrolysates from bee bread. Z Naturforsch C. 2005;60(1-2):133–8.

    CAS  Article  Google Scholar 

  21. 21.

    Nishikimi M, Roa NA, Yogi K. Measurement of superoxide dismutase. Biochem Biophys Res Commun. 1972;46:849–54.

    CAS  Article  Google Scholar 

  22. 22.

    Naithani V, Singhal AK, Chaudhary M. Comparative evaluation of metal chelating, antioxidant and free radical scavenging activity of TROIS and six products commonly used to control pain and inflammation associated with arthritis. Int J Drug Dev & Res. 2011;3(4):208–16.

    CAS  Google Scholar 

  23. 23.

    Ye SH, Liu F, Wang JH, Wang H, Zhang MP. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohyd Polym. 2012;87(1):764–70. https://doi.org/10.1016/j.carbpol.2011.08.057.

    CAS  Article  Google Scholar 

  24. 24.

    Perez-Torres I, Guarner-Lans V, Rubio-Ruiz ME. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int J Mol Sci. 2017;18(10):2098–2126. https://doi.org/10.3390/ijms18102098.

  25. 25.

    Aparadh VT, Naik VV, Karadge BA. Antioxidantive properties (TPC, DPPH, FRAP, Metal chelating ability, reducing power and TAC) within some cleome species. Ann di Bot. 2012;2:49–56.

    Google Scholar 

  26. 26.

    Liang TW, Tseng SC, Wang SL. Production and characterization of antioxidant properties of exopolysaccharide(s) from peanibacillus mucilaginosus TKU032. Mar Drugs 2016;14(2):40–52. https://doi.org/10.3390/md14020040.

  27. 27.

    Flora SJ. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev. 2009;2(4):191–206. https://doi.org/10.4161/oxim.2.4.9112.

    Article  Google Scholar 

  28. 28.

    Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev. 2016;2016:5692852 https://doi.org/10.1155/2016/5692852.

    Article  Google Scholar 

  29. 29.

    Liu SH, Sun SW, Tian ZF, Wu JY, Li XL, Xu CP. Antioxidant and hypoglycemic activities of exopolysaccharide by submerged culture of inocutus hispidus. Indian J Pharm Sci. 2015;77(3):361–5.

    CAS  Article  Google Scholar 

  30. 30.

    Wang Y, Yang Z, Wei X. Antioxidant activities potential of tea polysaccharide fractions obtained by ultra filtration. Int J Biol Macromol. 2012;50(3):558–64. https://doi.org/10.1016/j.ijbiomac.2011.12.028.

    CAS  Article  Google Scholar 

  31. 31.

    Guo S, Mao W, Han Y, Zhang X, Yang C, Chen Y, et al. Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda. Bioresour Technol. 2010;101(12):4729–32. https://doi.org/10.1016/j.biortech.2010.01.125.

    CAS  Article  Google Scholar 

  32. 32.

    Li HF, Xu JA, Liu YM, Ai SB, Qin F, Li ZW, et al. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohyd Polym. 2011;83(4):1821–7. https://doi.org/10.1016/j.carbpol.2010.10.046.

    CAS  Article  Google Scholar 

  33. 33.

    Driessche TrsV, Guisset J-L, Petiau-deVries GM. The redox state and circadian rhythms. Springer; Springer Netherlands 2000; XII, 284. https://doi.org/10.1007/978-94-015-9556-8.

  34. 34.

    Gutierrez RM, Baez EG. Evaluation of antidiabetic, antioxidant and antiglycating activities of the Eysenhardtia polystachya. Pharmacogn Mag. 2014;10(Suppl 2):S404–18. https://doi.org/10.4103/0973-1296.133295.

    Article  Google Scholar 

  35. 35.

    Popa E, Reis R, Gomes M. Chondrogenic phenotype of different cells encapsulated in kappa-carrageenan hydrogels for cartilage regeneration strategies. Biotechnol Appl Biochem. 2012;59(2):132–41. https://doi.org/10.1002/bab.1007.

    CAS  Article  Google Scholar 

  36. 36.

    Santo VE, Popa EG, Mano JF, Gomes ME, Reis RL. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomater. 2015;19:56–65. https://doi.org/10.1016/j.actbio.2015.03.015.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Hajer Radhouani, Cristiana Gonçalves and F. Raquel Maia were supported by grants with reference SFRH/BPD/100957/2014, SFRH/BPD/94277/2013 and SFRH/BPD/117492/2016, respectively of Fundação para a Ciência e a Tecnologia (FCT) from Portugal. JM Oliveira also would like to thank FCT for the fund provided under the program Investigador FCT 2015 (IF/01285/2015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hajer Radhouani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radhouani, H., Gonçalves, C., Maia, F.R. et al. Biological performance of a promising Kefiran-biopolymer with potential in regenerative medicine applications: a comparative study with hyaluronic acid. J Mater Sci: Mater Med 29, 124 (2018). https://doi.org/10.1007/s10856-018-6132-7

Download citation