Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules

  • Jinhua Song
  • Haorong Wang
  • Yunqi Yang
  • Zuohui Xiao
  • Haibao Lin
  • Lichun Jin
  • Yan Xue
  • Mingli Lin
  • Fuyu Chen
  • Mengqi Zhu
  • Yanhong Zhao
  • Zhongjun Qiu
  • Yanqiu Li
  • Xu Zhang
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


This study aimed to develop of a rapid and effective method to occlude dentinal tubules using carboxymethyl chitosan and lysozyme (CMC/LYZ) nanogels with encapsulated amorphous calcium phosphate (ACP) based on the transformation of ACP to HAP. In this work, CMC/LYZ was used to stabilize ACP and form CMC/LYZ-ACP nanogels, and then the nanogel-encapsulated ACP was applied to exposed dentinal tubule surfaces. The morphology of the nanogels was examined by transmission electron microscopy (TEM). Distribution and quantity of elements in CMC/LYZ-ACP nanogels were determined by element mapping and energy dispersive X-Ray spectroscopy (EDX). Scanning electron microscopy (SEM) images, XRD measurements and nanoindentation were applied to check the efficacy of tubular occlusion. TEM revealed that CMC/LYZ-ACP nanogels were spherical dense gel particles with size approximately 50–500 nm. Element mapping and EDX indicated that C, N, O, Ca, P, and S in the microspheres are thoroughly represented. SEM images shows that the thickness of the coating layer was approximately 1–2 μm and the depth to which the mineralized substance enters the dentinal tubule was approximately 4–8 μm. XRD measurements and nanoindentation indicated that the occluding mineralized substance observed were similar to nature dentin. CMC can form spherical dense nanogels loaded with ACP under the participation of lysozyme. The CMC/LYZ-ACP nanogels could increase the dentinal tubule occluding effectiveness. These results indicated that finding and developing novel nanomaterials of CMC/LYZ-ACP would be an effective strategy for the treatment of dentin hypersensitivity.



This study was financial supported by National Natural Science Foundation of China (Grant numbers 81571016 and 31300798) and Key Scientific and Technological Project of Tianjin Health and Family planning Commission (Grant numbers 16KG114). The authors wish to thank Qing cai of Beijing University of Chemical Technology as well as Peng Yang of Shaanxi Normal University for their contributions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10856_2018_6094_MOESM1_ESM.tif (2 mb)
10856_2018_6094_MOESM2_ESM.tif (2.1 mb)
10856_2018_6094_MOESM3_ESM.tif (2 mb)
10856_2018_6094_MOESM4_ESM.tif (392 kb)


  1. 1.
    Brannstrom M. Dentin sensitivity and aspiration of odontoblasts. J Am Dent Assoc. 1963;66:366–70. (1939).CrossRefGoogle Scholar
  2. 2.
    Ma Q, Wang T, Meng Q, Xu X, Wu H, Xu D, et al. Comparison of in vitro dentinal tubule occluding efficacy of two different methods using a nano-scaled bioactive glass-containing desensitising agent. J Dent. 2017;60:63–9.CrossRefGoogle Scholar
  3. 3.
    West NX, Lussi A, Seong J, Hellwig E. Dentin hypersensitivity: pain mechanisms and aetiology of exposed cervical dentin. Clin Oral Investig. 2013;17(Suppl 1):S9–19.CrossRefGoogle Scholar
  4. 4.
    Chung G, Jung SJ, Oh SB. Cellular and molecular mechanisms of dental nociception. J Dent Res. 2013;92:948–55.CrossRefGoogle Scholar
  5. 5.
    Brannstrom M, Linden L-Ak, Johnson G. Movement of dentinal and pulpal fluid caused by clinical procedures. J Dent Res. 1968;47:679–82.CrossRefGoogle Scholar
  6. 6.
    Absi E, Addy M, Adams D. Dentine hypersensitivity. J Clin Periodontol. 1987;14:280–4.CrossRefGoogle Scholar
  7. 7.
    Chen W-C, Kung J-C, Chen C-H, Hsiao Y-C, Shih C-J, Chien C-S. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion. Appl Surf Sci. 2013;283:833–42.CrossRefGoogle Scholar
  8. 8.
    Wang R, Wang Q, Wang X, Tian L, Liu H, Zhao M, et al. Enhancement of nano-hydroxyapatite bonding to dentin through a collagen/calcium dual-affinitive peptide for dentinal tubule occlusion. J Biomater Appl. 2014;29:268–77.CrossRefGoogle Scholar
  9. 9.
    Yu J, Yang H, Li K, Lei J, Zhou L, Huang C. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study. J Dent. 2016;50:21–9.CrossRefGoogle Scholar
  10. 10.
    Lin X, Xie F, Ma X, Hao Y, Qin H, Long J. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J Biomater Sci Polym Ed. 2017;28:846–63.CrossRefGoogle Scholar
  11. 11.
    Termine JD, Posner AS. Amorphous/crystalline interrelationships in bone mineral. Calcif Tissue Res. 1967;1:8–23.CrossRefGoogle Scholar
  12. 12.
    Colfen H. Biomineralization: a crystal-clear view. Nat Mater. 2010;9:960–1.CrossRefGoogle Scholar
  13. 13.
    Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.CrossRefGoogle Scholar
  14. 14.
    Habraken WJ, Tao J, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun. 2013;4:1507.CrossRefGoogle Scholar
  15. 15.
    Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M. Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials. 1996;17:1771–7.CrossRefGoogle Scholar
  16. 16.
    Skrtic D, Antonucci JM, Eanes ED, Eichmiller FC, Schumacher GE. Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J Biomed Mater Res. 2000;53:381–91.CrossRefGoogle Scholar
  17. 17.
    Weir MD, Chow LC, Xu HH. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res. 2012;91:979–84.CrossRefGoogle Scholar
  18. 18.
    Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res. 1975;8:273–81.CrossRefGoogle Scholar
  19. 19.
    Zhao J, Liu Y, Sun W, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J. 2011;5:40.CrossRefGoogle Scholar
  20. 20.
    Dey A, Bomans PH, Muller FA, Will J, Frederik PM, de With G, et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater. 2010;9:1010–4.CrossRefGoogle Scholar
  21. 21.
    Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, et al. Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics. Adv Mater. 2011;23:4695–701.CrossRefGoogle Scholar
  22. 22.
    Gong X, Wang YW, Ihli J, Kim YY, Li S, Walshaw R, et al. The crystal hotel: a microfluidic approach to biomimetic crystallization. Adv Mater. 2015;27:7395–400.CrossRefGoogle Scholar
  23. 23.
    Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9:1004–9.CrossRefGoogle Scholar
  24. 24.
    Burwell AK, Thula-Mata T, Gower LB, Habelitz S, Kurylo M, Ho SP, et al. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS ONE. 2012;7:e38852.CrossRefGoogle Scholar
  25. 25.
    Liu Y, Kim YK, Dai L, Li N, Khan SO, Pashley DH, et al. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials. 2011;32:1291–300.CrossRefGoogle Scholar
  26. 26.
    Zhang X, Li Y, Sun X, Kishen A, Deng X, Yang X, et al. Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J Mater Sci Mater Med. 2014;25:2619–28.CrossRefGoogle Scholar
  27. 27.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Progress Polym Sci. 2008;33:448–77.CrossRefGoogle Scholar
  28. 28.
    Sundaram J, Durance TD, Wang R. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Acta Biomater. 2008;4:932–42.CrossRefGoogle Scholar
  29. 29.
    Zhu K, Ye T, Liu J, Peng Z, Xu S, Lei J, et al. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int J Pharm. 2013;441:721–7.CrossRefGoogle Scholar
  30. 30.
    Zhang L-X, Cao X-H, Zheng Y-B, Li Y-Q. Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification. Electrochem Commun. 2010;12:1249–52.CrossRefGoogle Scholar
  31. 31.
    Ghimire A, Kasi RM, Kumar CV. Proton-coupled protein binding: controlling lysozyme/poly(acrylic acid) interactions with pH. J Phys Chem B. 2014;118:5026–33.CrossRefGoogle Scholar
  32. 32.
    Ma Y, Zhang J, Guo S, Shi J, Du W, Wang Z, et al. Biomimetic mineralization of nano-sized, needle-like hydroxyapatite with ultrahigh capacity for lysozyme adsorption. Mater Sci Eng C Mater Biol Appl. 2016;68:551–6.CrossRefGoogle Scholar
  33. 33.
    Pashley DH, Galloway SE. The effects of oxalate treatment on the smear layer of ground surfaces of human dentine. Arch Oral Biol. 1985;30:731–7.CrossRefGoogle Scholar
  34. 34.
    Makvandi P, Esposito Corcione C, Paladini F, Gallo AL, Montagna F, Jamaledin R, et al. Antimicrobial modified hydroxyapatite composite dental bite by stereolithography. Polym Adv Technol. 2018;29:364–71.CrossRefGoogle Scholar
  35. 35.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  36. 36.
    Song Y, Zhou Y, Chen L. Wood cellulose-based polyelectrolyte complex nanoparticles as protein carriers. J Mater Chem. 2012;22:2512–9.CrossRefGoogle Scholar
  37. 37.
    Subia B, Kundu SC. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology. 2013;24:035103.CrossRefGoogle Scholar
  38. 38.
    Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60:1638–49.CrossRefGoogle Scholar
  39. 39.
    Li Z, Xu W, Zhang C, Chen Y, Li B. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int J Biol Macromol. 2015;75:166–72.CrossRefGoogle Scholar
  40. 40.
    Wang H, Xiao Z, Yang J, Lu D, Kishen A, Li Y, et al. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci Rep. 2017;7:40701.CrossRefGoogle Scholar
  41. 41.
    Chen Z, Cao S, Wang H, Li Y, Kishen A, Deng X, et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE. 2015;10:e0116553.CrossRefGoogle Scholar
  42. 42.
    Chen X-G, Park H-J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym. 2003;53:355–9.CrossRefGoogle Scholar
  43. 43.
    Gao A, Wu Q, Wang D, Ha Y, Chen Z, Yang P. A superhydrophobic surface templated by protein self‐assembly and emerging application toward protein crystallization. Adv Mater. 2016;28:579–87.CrossRefGoogle Scholar
  44. 44.
    Li J, Wang X. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/iota-carrageenan particles. Food Chem. 2015;168:566–71.CrossRefGoogle Scholar
  45. 45.
    Nita LE, Chiriac AP, Bercea M. Effect of pH and temperature upon self-assembling process between poly(aspartic acid) and Pluronic F127. Colloids Surf B Biointerfaces. 2014;119:47–54.CrossRefGoogle Scholar
  46. 46.
    Marshall SJ, Bayne SC, Baier R, Tomsia AP, Marshall GW. A review of adhesion science. Dent Mater. 2010;26:e11–6.CrossRefGoogle Scholar
  47. 47.
    Fan B, Fan W, Wu D, Tay F, Ma T, Wu Y. Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin. Int J Nanomed. 2014;9:5217–30.CrossRefGoogle Scholar
  48. 48.
    Carroll KJ, Pitts JA, Zhang K, Pradhan AK, Carpenter EE. Nonclassical crystallization of amorphous iron nanoparticles by radio frequency methods. J Appl Phys. 2010;107:09A302.CrossRefGoogle Scholar
  49. 49.
    Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters. Science. 2008;322:1819–22.CrossRefGoogle Scholar
  50. 50.
    Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun. 2011;2:590.CrossRefGoogle Scholar
  51. 51.
    Cantaert B, Kim Y-Y, Ludwig H, Nudelman F, Sommerdijk NAJM, Meldrum FC. Think positive: phase separation enables a positively charged additive to induce dramatic changes in calcium carbonate morphology. Adv Funct Mater. 2012;22:907–15.CrossRefGoogle Scholar
  52. 52.
    Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30:478–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jinhua Song
    • 1
  • Haorong Wang
    • 1
  • Yunqi Yang
    • 1
  • Zuohui Xiao
    • 1
  • Haibao Lin
    • 2
  • Lichun Jin
    • 1
  • Yan Xue
    • 1
  • Mingli Lin
    • 1
  • Fuyu Chen
    • 1
  • Mengqi Zhu
    • 1
  • Yanhong Zhao
    • 1
  • Zhongjun Qiu
    • 3
  • Yanqiu Li
    • 1
  • Xu Zhang
    • 1
  1. 1.School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
  2. 2.School and Hospital of StomatologyJiamusi UniversityJiamusiChina
  3. 3.State Key Laboratory of Precision Measuring Technology & InstrumentsTianjin UniversityTianjinChina

Personalised recommendations