Skip to main content

Advertisement

Log in

Human amniotic membrane for guided bone regeneration of calvarial defects in mice

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Due to its biological properties, human amniotic membrane (hAM) is widely studied in the field of tissue engineering and regenerative medicine. hAM is already very attractive for wound healing and it may be helpful as a support for bone regeneration. However, few studies assessed its potential for guided bone regeneration (GBR). The purpose of the present study was to assess the potential of the hAM as a membrane for GBR. In vitro, cell viability in fresh and cryopreserved hAM was assessed. In vivo, we evaluated the impact of fresh versus cryopreserved hAM, using both the epithelial or the mesenchymal layer facing the defect, on bone regeneration in a critical calvarial bone defect in mice. Then, the efficacy of cryopreserved hAM associated with a bone substitute was compared to a collagen membrane currently used for GBR. In vitro, no statistical difference was observed between the conditions concerning cell viability. Without graft material, cryopreserved hAM induced more bone formation when the mesenchymal layer covered the defect compared to the defect left empty. When associated with a bone substitute, such improved bone repair was not observed. These preliminary results suggest that cryopreserved hAM has a limited potential for GBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMP :

Bone morphogenetic protein

GBR :

Guided bone regeneration

HA :

Hydroxy apatite

hAM :

human amniotic membrane

hAECs :

human amniotic epithelial cells

hAMSCs :

human amniotic mesenchymal stem cells

f-hAM :

fresh hAM

Cryo-hAM :

Cryopreserved hAM

References

  1. Larsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV. Regenerative Medicine for Periodontal and Peri-implant Diseases. J Dent Res. 2016;95:255–66. https://doi.org/10.1177/0022034515618887.

    Article  CAS  Google Scholar 

  2. Milinkovic I, Cordaro L. Are there specific indications for the different alveolar bone augmentation procedures for implant placement? A systematic review. Int J Oral Maxillofac Surg. 2014;43:606–25. https://doi.org/10.1016/j.ijom.2013.12.004.

    Article  CAS  Google Scholar 

  3. Sculean A, Chappuis V, Cosgarea R. Coverage of mucosal recessions at dental implants. Periodontol 2000. 2017;73:134–40. https://doi.org/10.1111/prd.12178.

    Article  Google Scholar 

  4. Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57:3–14. https://doi.org/10.1016/j.jpor.2012.12.001.

    Article  Google Scholar 

  5. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu T-MG, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent Mater. 2012;28:703–21. https://doi.org/10.1016/j.dental.2012.04.022.

    Article  CAS  Google Scholar 

  6. Francisco JC, Correa Cunha R, Cardoso MA, Baggio Simeoni R, Mogharbel BF, Picharski GL, et al. Decellularized Amniotic Membrane Scaffold as a Pericardial Substitute: An In Vivo Study. Transplant Proc. 2016;48:2845–9. https://doi.org/10.1016/j.transproceed.2016.07.026.

    Article  CAS  Google Scholar 

  7. Sanluis-Verdes A, Sanluis-Verdes N, Manso-Revilla MJ, Castro-Castro AM, Pombo-Otero J, Fraga-Mariño M, et al. Tissue engineering for neurodegenerative diseases using human amniotic membrane and umbilical cord. Cell Tissue Bank. 2017;18:1–15. https://doi.org/10.1007/s10561-016-9595-0.

    Article  CAS  Google Scholar 

  8. Ilic D, Vicovac L, Nikolic M, Lazic Ilic E. Human amniotic membrane grafts in therapy of chronic non-healing wounds. Br Med Bull. 2016;117:59–67. https://doi.org/10.1093/bmb/ldv053.

    Article  CAS  Google Scholar 

  9. Ricci E, Vanosi G, Lindenmair A, Hennerbichler S, Peterbauer-Scherb A, Wolbank S, et al. Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell Tissue Bank. 2013;14:475–88. https://doi.org/10.1007/s10561-012-9337-x.

    Article  CAS  Google Scholar 

  10. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000;19:348–52.

    Article  CAS  Google Scholar 

  11. Kubo M, Sonoda Y, Muramatsu R, Usui M. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42:1539–46.

    CAS  Google Scholar 

  12. Kang JW, Koo HC, Hwang SY, Kang SK, Ra JC, Lee MH, et al. Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J Vet Sci. 2012;13:23–31.

    Article  Google Scholar 

  13. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H-J, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived. Stem Cells Stem Cells Dayt Ohio. 2008;26:300–11. https://doi.org/10.1634/stemcells.2007-0594.

    Article  Google Scholar 

  14. Grzywocz Z, Pius-Sadowska E, Klos P, Gryzik M, Wasilewska D, Aleksandrowicz B, et al. Growth factors and their receptors derived from human amniotic cells in vitro. Folia Histochem Cytobiol Pol Acad Sci Pol Histochem Cytochem Soc. 2014;52:163–70. https://doi.org/10.5603/FHC.2014.0019.

    Article  CAS  Google Scholar 

  15. Go YY, Kim SE, Cho GJ, Chae S-W, Song J-J. Differential effects of amnion and chorion membrane extracts on osteoblast-like cells due to the different growth factor composition of the extracts. PLoS ONE. 2017;12:e0182716. https://doi.org/10.1371/journal.pone.0182716.

    Article  Google Scholar 

  16. Malhotra C, Jain AK. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J Transplant. 2014;4:111–21. https://doi.org/10.5500/wjt.v4.i2.111.

    Article  Google Scholar 

  17. Allen CL, Clare G, Stewart EA, Branch MJ, McIntosh OD, Dadhwal M, et al. Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE. 2013;8:e78441. https://doi.org/10.1371/journal.pone.0078441.

    Article  Google Scholar 

  18. Laurent R, Nallet A, Obert L, Nicod L, Gindraux F. Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank. 2014;15:267–75. https://doi.org/10.1007/s10561-014-9437-x.

    Article  Google Scholar 

  19. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1:296–305. https://doi.org/10.1002/term.40.

    Article  CAS  Google Scholar 

  20. Lindenmair A, Wolbank S, Stadler G, Meinl A, Peterbauer-Scherb A, Eibl J, et al. Osteogenic differentiation of intact human amniotic membrane. Biomaterials. 2010;31:8659–65. https://doi.org/10.1016/j.biomaterials.2010.07.090.

    Article  CAS  Google Scholar 

  21. Barboni B, Mangano C, Valbonetti L, Marruchella G, Berardinelli P, Martelli A, et al. Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation. PLoS ONE. 2013;8:e63256. https://doi.org/10.1371/journal.pone.0063256.

    Article  Google Scholar 

  22. Lawson VG. Oral Cavity Reconstruction Using Pectoralis Major Muscle and Amnion. Arch Otolaryngol - Head Neck Surg. 1985;111:230–3. https://doi.org/10.1001/archotol.1985.00800060054006.

    Article  CAS  Google Scholar 

  23. Gomes MF, da Silva dos Anjos MJ, de Oliveira Nogueira T, Guimarães SAC. Histologic Evaluation of the Osteoinductive Property of Autogenous Demineralized Dentin Matrix on Surgical Bone Defects in Rabbit Skulls Using Human Amniotic Membrane for Guided Bone Regeneration. Int J Oral Maxillofac Implants. 2001;16:563.

    CAS  Google Scholar 

  24. Tsugawa J, Komaki M, Yoshida T, Nakahama K, Amagasa T, Morita I. Cell-printing and transfer technology applications for bone defects in mice. J Tissue Eng Regen Med. 2011;5:695–703. https://doi.org/10.1002/term.366.

    Article  CAS  Google Scholar 

  25. Semyari H, Rajipour M, Sabetkish S, Sabetkish N, Abbas FM, Kajbafzadeh A-M. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study. Cell Tissue Bank. 2015;17:69–83. https://doi.org/10.1007/s10561-015-9518-5.

    Article  Google Scholar 

  26. Wu P-H, Chung H-Y, Wang J-H, Shih J-C, Kuo MY-P, Chang P-C, et al. Amniotic membrane and adipose-derived stem cell co-culture system enhances bone regeneration in a rat periodontal defect model. J Formos Med Assoc Taiwan Yi Zhi. 2015;115:186–94. https://doi.org/10.1016/j.jfma.2015.02.002.

    Article  Google Scholar 

  27. Li W, Ma G, Brazile B, Li N, Dai W, Butler JR, et al. Investigating the Potential of Amnion-Based Scaffolds as a Barrier Membrane for Guided Bone Regeneration. Langmuir ACS J Surf Colloids. 2015;31:8642–53. https://doi.org/10.1021/acs.langmuir.5b02362.

    Article  CAS  Google Scholar 

  28. Amemiya T, Nishigaki M, Yamamoto T, Kanamura N. Experiences of preclinical use of periodontal ligament-derived cell sheet cultured on human amniotic membrane. J Oral Tissue Eng. 2008;6:106–12.

    Google Scholar 

  29. Iwasaki K, Komaki M, Yokoyama N, Tanaka Y, Taki A, Honda I, et al. Periodontal regeneration using periodontal ligament stem cell-transferred amnion. Tissue Eng Part A. 2014;20:693–704. https://doi.org/10.1089/ten.TEA.2013.0017.

    Article  CAS  Google Scholar 

  30. Kumar A, Chandra RV, Reddy AA, Reddy BH, Reddy C, Naveen A. Evaluation of clinical, antiinflammatory and antiinfective properties of amniotic membrane used for guided tissue regeneration: A randomized controlled trial. Dent Res J. 2015;12:127–35.

    Google Scholar 

  31. Kiany F, Moloudi F. Amnion membrane as a novel barrier in the treatment of intrabony defects: a controlled clinical trial. Int J Oral Maxillofac Implants. 2015;30:639–47.

    Article  Google Scholar 

  32. Kothiwale SV, Anuroopa P, Gajiwala AL. A clinical and radiological evaluation of DFDBA with amniotic membrane versus bovine derived xenograft with amniotic membrane in human periodontal grade II furcation defects. Cell Tissue Bank. 2009;10:317–26. https://doi.org/10.1007/s10561-009-9126-3.

    Article  Google Scholar 

  33. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC. Some important factors in the wet precipitation process of hydroxyapatite. Mater Des. 2003;24:197–202. https://doi.org/10.1016/S0261-3069(03)00003-7.

    Article  CAS  Google Scholar 

  34. Catros S, Guillemot F, Lebraud E, Chanseau C, Perez S, Bareille R, et al. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. IRBM. 2010;31:226–33. https://doi.org/10.1016/j.irbm.2010.04.002.

    Article  Google Scholar 

  35. Guduric V, Metz C, Siadous R, Bareille R, Levato R, Engel E, et al. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering. J Mater Sci Mater Med. 2017;28:78. https://doi.org/10.1007/s10856-017-5887-6.

    Article  Google Scholar 

  36. Arai N, Tsuno H, Okabe M, Yoshida T, Koike C, Noguchi M, et al. Clinical application of a hyperdry amniotic membrane on surgical defects of the oral mucosa. J Oral Maxillofac Surg J Am Assoc Oral Maxillofac Surg. 2012;70:2221–8. https://doi.org/10.1016/j.joms.2011.09.033.

    Article  Google Scholar 

  37. Gurinsky B. A novel dehydrated amnion allograft for use in the treatment of gingival recession: an observational case series. J Implant & Adv Clin Dent. 2009;1:124–30.

    Google Scholar 

  38. Maral T, Borman H, Arslan H, Demirhan B, Akinbingol G, Haberal M. Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns. 1999;25:625–35. https://doi.org/10.1016/S0305-4179(99)00072-8.

    Article  CAS  Google Scholar 

  39. Hennerbichler S, Reichl B, Pleiner D, Gabriel C, Eibl J, Redl H. The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank Int J Bank Eng Transplant Cells Tissues 2007:1.

  40. Kesting MR, Loeffelbein DJ, Steinstraesser L, Muecke T, Demtroeder C, Sommerer F, et al. Cryopreserved human amniotic membrane for soft tissue repair in rats. Ann Plast Surg. 2008;60:684–91. https://doi.org/10.1097/SAP.0b013e31814fb9d2.

    Article  CAS  Google Scholar 

  41. Si J, Dai J, Zhang J, Liu S, Gu J, Shi J, et al. Comparative investigation of human amniotic epithelial cells and mesenchymal stem cells for application in bone tissue engineering. Stem Cells Int. 2015;2015:565732. https://doi.org/10.1155/2015/565732.

    Article  Google Scholar 

  42. Laurent R, Nallet A, de Billy B, Obert L, Nicod L, Meyer C, et al. Fresh and in vitro osteodifferentiated human amniotic membrane, alone or associated with an additional scaffold, does not induce ectopic bone formation in Balb/c mice. Cell Tissue Bank. 2017;18:17–25. https://doi.org/10.1007/s10561-016-9605-2.

    Article  CAS  Google Scholar 

  43. Gindraux F, Rondot T, de Billy B, Zwetyenga N, Fricain J-C, Pagnon A, et al. Similarities between induced membrane and amniotic membrane: Novelty for bone repair. Placenta. 2017. https://doi.org/10.1016/j.placenta.2017.06.340.

    Article  Google Scholar 

  44. Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol. 2001;72:215–29. https://doi.org/10.1902/jop.2001.72.2.215.

    Article  CAS  Google Scholar 

  45. Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–81. https://doi.org/10.1016/j.actbio.2011.03.019.

    Article  CAS  Google Scholar 

  46. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop. 2007;31:729–34. https://doi.org/10.1007/s00264-007-0418-6.

    Article  Google Scholar 

  47. Lee C-H, Jin MU, Jung H-M, Lee J-T, Kwon T-G. Effect of dual treatment with SDF-1 and BMP-2 on ectopic and orthotopic bone formation. PLoS ONE. 2015;10:e0120051. https://doi.org/10.1371/journal.pone.0120051.

    Article  Google Scholar 

  48. Ben-David D, Srouji S, Shapira-Schweitzer K, Kossover O, Ivanir E, Kuhn G, et al. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials. 2013;34:2902–10. https://doi.org/10.1016/j.biomaterials.2013.01.035.

    Article  CAS  Google Scholar 

  49. Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Cranio-Maxillo-Fac Surg Publ Eur Assoc Cranio-Maxillo-Fac Surg. 2012;40:287–91. https://doi.org/10.1016/j.jcms.2011.04.008.

    Article  Google Scholar 

  50. Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2010;16:123–45. https://doi.org/10.1089/ten.TEB.2009.0658.

    Article  Google Scholar 

  51. Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 2011;45:14–24. https://doi.org/10.1258/la.2010.010085.

    Article  CAS  Google Scholar 

  52. Smith DM, Cray JJ, Weiss LE, Dai Fei EK, Shakir S, Rottgers SA, et al. Precise control of osteogenesis for craniofacial defect repair: the role of direct osteoprogenitor contact in BMP-2-based bioprinting. Ann Plast Surg. 2012;69:485–8. https://doi.org/10.1097/SAP.0b013e31824cfe64.

    Article  CAS  Google Scholar 

  53. Pellegrini G, Pagni G, Rasperini G Surgical Approaches Based on Biological Objectives: GTR versus GBR Techniques. Int J Dent 2013;2013:1–13. https://doi.org/10.1155/2013/521547.

Download references

Acknowledgements

La Fondation des gueules cassées for financial support. Ray Cooke (professional proof-reader) for copyediting the manuscript. Patrick Guitton for his contribution to design the figures.

Author contributions

MF (1st author): Contributed to conception and design of the experimental studies (both in vitro and in vivo studies); Contributed to data acquisition, analysis, and data interpretation; Drafted the manuscript; Critically revised the manuscript; Gave final approval; Agrees to be accountable for all aspects of work ensuring integrity and accuracy. OC(2nd author): X-ray analyzes; Gave final approval; Agrees to be accountable for all aspects of work ensuring integrity and accuracy. JK(3rd author): Obtained hydroxyapatite particles; Critically revised the manuscript; Gave final approval; Agrees to be accountable for all aspects of work ensuring integrity and accuracy. FG (4th author): Contributed to conception and design of the experimental in vivo studies; Critically revised the manuscript; Gave final approval; Agrees to be accountable for all aspects of work ensuring integrity and accuracy. SB (5th author): contributed to collection of human placentas; Critically revised the manuscript; Gave final appoval; Agrees to be accountable for all aspects of work ensuring integrity and accuracy RB (6th author): contributed to conception and design of in vitro studies; Critically revised the manuscript; Gave final appoval; Agrees to be accountable for all aspects of work ensuring integrity and accuracyZI (57th author): Contributed to collection of human placentas; Critically revised the manuscript; Gave final approval, Agrees to be accountable for all aspects of work ensuring integrity and accuracy. JCF (last co-author): Contributed to conception and design of experimental studies (both in vitro and in vivo studies); Contributed to analysis, and interpretation of the data; Drafted the manuscript; Critically revised the manuscript; Gave final approvalAgrees to be accountable for all aspects of work ensuring integrity and accuracy. CB (Last co- author); Contributed to conception and design of experimental studies (both in vitro and in vivo studies); Contributed to data acquisition, analysis, and data interpretation; Drafted the manuscript; Gave final approval; Agrees to be accountable for all aspects of work ensuring integrity and accuracy.

Funding

Fondation des gueules cassées.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Fénelon.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval

The present study was approved by the French Ethics Committee (agreement APAFIS n 2685-20l5111012075358 v4).

Additional information

Jean-Christophe Fricain and Claudine Boiziau are co-directed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fénelon, M., Chassande, O., Kalisky, J. et al. Human amniotic membrane for guided bone regeneration of calvarial defects in mice. J Mater Sci: Mater Med 29, 78 (2018). https://doi.org/10.1007/s10856-018-6086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6086-9

Navigation