3D fiber deposited polymeric scaffolds for external auditory canal wall

Abstract

The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young’s modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs.

This study demonstrated the fabrication feasibility of outer ear canal wall scaffolds via additive manufacturing. Aimed to match several important requirements for biomaterial application to ear replacements under the Tissue Engineering paradigm, including shape, porosity and pore size, surface area, mechanical properties and favorable in vitro interaction with osteo-differentiated mesenchymal stromal cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Fatterpekar GM, Doshi AH, Dugar M, Delman BN, Naidich TP, Som PM. Role of 3D CT in the Evaluation of the Temporal Bone. Radiogrphics. 2006;26(S1):17–32. https://doi.org/10.1148/rg.26si065502

    Article  Google Scholar 

  2. 2.

    Chatra P. Lesions in the external auditory canal. Indian J Radiol Imaging. 2011;21(4):274. https://doi.org/10.4103/0971-3026.90687

    Article  Google Scholar 

  3. 3.

    Dankuc D, Vlaski L, Pejakovic N. Techniques of the tympanomastoidectomy with reconstruction of the posterior bone wall of the external auditory canal. Srp Arh Celok Lek. 2015;143(7–8):480–6. https://doi.org/10.2298/SARH1508480D

    Article  Google Scholar 

  4. 4.

    Heywood R, Narula A. The pros and cons of canal wall up versus canal wall down mastoidectomy for cholesteatoma. Otorhinolaryngologist. 2013;6(3):140–3.

    Google Scholar 

  5. 5.

    Wullstein SR, Schindler K, Döll W. Further observations on application of “plasticin” in ear surgery. In: Grote JJ, editor. Biomaterials in otology. Leiden: Springer Netherlands; 1984. p. 250–61. https://doi.org/10.1007/978-94-009-6756-4_30

  6. 6.

    Dormer KJ, Gan RZ. Biomaterials for implantable middle ear hearing devices. Otolaryngol Clin North Am. 2001;34:289–97.

    CAS  Article  Google Scholar 

  7. 7.

    Beutner D, Hüttenbrink KB. Passive and active middle ear implants. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2009;8:Doc09.

    Google Scholar 

  8. 8.

    Danti S, Stefanini C, D’Alessandro D, Moscato S, Pietrabissa A, Petrini M, et al. Novel biological/biohybrid prostheses for the ossicular chain: fabrication feasibility and preliminary functional characterization. Biomed Micro. 2009;11(4):783–93. https://doi.org/10.1007/s10544-009-9293-9

    CAS  Article  Google Scholar 

  9. 9.

    Danti S, D’Alessandro D, Pietrabissa A, Petrini M, Berrettini S. Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. J Biomed Mater Res A. 2010;92(4):1343–56. https://doi.org/10.1002/jbm.a.32447

    CAS  Article  Google Scholar 

  10. 10.

    Mota C, Danti S, D’Alessandro D, Trombi L, Ricci C, Puppi D, et al. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering. Biofabrication. 2015;7(2):025005 https://doi.org/10.1088/1758-5090/7/2/025005

    CAS  Article  Google Scholar 

  11. 11.

    Danti S, Mota C, D’alessandro D, Trombi L, Ricci C, Redmond SL, et al. Tissue engineering of the tympanic membrane using electrospun PEOT/PBT copolymer scaffolds: a morphological in vitro study. Hear, Balance Commun. 2015;13(4):133–47. https://doi.org/10.3109/21695717.2015.1092372

    Article  Google Scholar 

  12. 12.

    Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85. https://doi.org/10.1016/S0142-9612(01)00232-0

    CAS  Article  Google Scholar 

  13. 13.

    Moroni L, Poort G, Van Keulen F, de Wijn JR, van Blitterswijk CA. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: an experimental and numerical analysis. J Biomed Mater Res A. 2006;78(3):605–14. https://doi.org/10.1002/jbm.a.30716

    CAS  Article  Google Scholar 

  14. 14.

    Moroni L, de Wijn JR, van Blitterswijk CA. Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties. J Biomed Mater Res A. 2005;75(4):957–65. https://doi.org/10.1002/jbm.a.30499

    CAS  Article  Google Scholar 

  15. 15.

    Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 2006;27(7):974–85. https://doi.org/10.1016/j.biomaterials.2005.07.023

    CAS  Article  Google Scholar 

  16. 16.

    Moroni L, Curti M, Welti M, Korom S, Weder W, de Wijn JR, et al. Anatomical 3D fiber-deposited scaffolds for tissue engineering: designing a neotrachea. Tissue Eng. 2007;13(10):2483–93. https://doi.org/10.1089/ten.2006.0385

    CAS  Article  Google Scholar 

  17. 17.

    Moroni L, Schotel R, Hamann D, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Funct Mater. 2008;18(1):53–60. https://doi.org/10.1002/adfm.200601158

    CAS  Article  Google Scholar 

  18. 18.

    Agarwal S, Wendorff JH, Greiner A. Progress in the field of electrospinning for tissue engineering applications. Adv Mater. 2009;21(32-33):3343–51. https://doi.org/10.1002/adma.200803092

    CAS  Article  Google Scholar 

  19. 19.

    Moroni L, de Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed. 2008;19(5):543–72. https://doi.org/10.1163/156856208784089571

    CAS  Article  Google Scholar 

  20. 20.

    Woodfield TB, Miot S, Martin I, van Blitterswijk CA, Riesle J. The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials. 2006;27(7):1043–53. https://doi.org/10.1016/j.biomaterials.2005.07.032

    CAS  Article  Google Scholar 

  21. 21.

    Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone. 1997;20(4):315–28.

    CAS  Article  Google Scholar 

  22. 22.

    Hildebrand T, Ruegsegger P. A new method for the model-independent assessment of the thickness in three-dimensional images. J Microsc. 1997;185(1):67–75.

    Article  Google Scholar 

  23. 23.

    Panetta D, Belcari N, Del Guerra A, Bartolomei A, Salvadori PA. Analysis of image sharpness reproducibility on a novel engineered micro-CT scanner with variable geometry and embedded recalibration software. Phys Med. 2012;28(2):166–73. https://doi.org/10.1016/j.ejmp.2011.03.006

    CAS  Article  Google Scholar 

  24. 24.

    Doube M, Kłosowski MM, Arganda-Carreras I, Cordelières FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ. BoneJ: Free and extensible bone image analysis in Image. J Bone. 2010;47(6):1076–9. https://doi.org/10.1016/j.bone.2010.08.023

    Article  Google Scholar 

  25. 25.

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. https://doi.org/10.1038/nmeth.2089

    CAS  Article  Google Scholar 

  26. 26.

    Jerabek M, Major Z, Lang RW. Uniaxial compression testing of polymeric materials. Polym Test. 2010;29:302–9.

    CAS  Article  Google Scholar 

  27. 27.

    Trombi L, Danti S, Savelli S, Moscato S, D’Alessandro D, Ricci C, et al. Mesenchymal stromal cell culture and delivery in autologous conditions: a smart approach for orthopedic applications. J Vis Exp. 2016. https://doi.org/10.3791/54845

  28. 28.

    Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53.

    CAS  Article  Google Scholar 

  29. 29.

    Van Blitterswijk CA, Hesseling SC, Grote JJ, Koerten HK, de Groot K. The biocompatibility of hydroxyapatite ceramic: a study of retrieved human middle ear implants. J Biomed Mater Res. 1990;24(4):433–53. https://doi.org/10.1002/jbm.820240403

    Article  Google Scholar 

  30. 30.

    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91. https://doi.org/10.1016/j.biomaterials.2005.02.002

    CAS  Article  Google Scholar 

  31. 31.

    Bakker D, van Blitterswijk CA, Hesseling SC, Th. Daems W, Kuijpers W, Grote JJ. The behavior of alloplastic tympanic membranes in Staphylococcus aureus-induced middle ear infection. I. Quantitative biocompatibility evaluation. J Biomed Mater Res. 1990;24(6):669–88. https://doi.org/10.1002/jbm.820240604

    CAS  Article  Google Scholar 

  32. 32.

    Barker MK, Seedhom BB. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? Rheumatology. 2001;40(3):274–84. https://doi.org/10.1093/rheumatology/40.3.274

    CAS  Article  Google Scholar 

  33. 33.

    De Santis R, D’Amora U, Russo T, Ronca A, Gloria A, Ambrosio L. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds. J Mater Sci. 2015. https://doi.org/10.1007/s10856-015-5582-4.

Download references

Acknowledgements

The Italian Ministry of University and Research (MIUR, PRIN 2010S58B38) and the Tuscany Region (Health Program 2009 and CUCCS 2014) are greatly acknowledged for funding this research. S.D. and D.P. would like to thank the ARPA Foundation young researchers’ award, Decree #21, 20 December 2011, Medicine Faculty, University of Pisa. This research project received support from the Dutch Province of Limburg. Dr. Delfo D’Alessandro (University of Pisa) is kindly acknowledged for his remarkable technical support to histologic analysis.

Author contributions

C.M., L.B., and S.D. designed the experiments. C.M., M.M., D.P., L.T., and S.D. performed the experiments. C.M., M.M., D.P., and L.T. analyzed the data. C.M., V.G., and S.D. drafted the manuscript. P.A.S., S.G., C.S., L.M., and S.B. provided reagents and tools.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serena Danti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mota, C., Milazzo, M., Panetta, D. et al. 3D fiber deposited polymeric scaffolds for external auditory canal wall. J Mater Sci: Mater Med 29, 63 (2018). https://doi.org/10.1007/s10856-018-6071-3

Download citation