Advertisement

Zirconia stimulates ECM-remodeling as a prerequisite to pre-osteoblast adhesion/proliferation by possible interference with cellular anchorage

  • Celio J. da Costa Fernandes
  • Marcel Rodrigues Ferreira
  • Fábio J. B. Bezerra
  • Willian F. Zambuzzi
Biocompatibility Studies Original Research
  • 281 Downloads
Part of the following topical collections:
  1. Biocompatibility Studies

Abstract

The biological response to zirconia (ZrO2) is not completely understood, which prompted us to address its effect on pre-osteoblastic cells in both direct and indirect manner. Our results showed that zirconia triggers important intracellular signaling mainly by governing survival signals which leads to cell adhesion and proliferation by modulating signaling cascade responsible for dynamic cytoskeleton rearrangement, as observed by fluorescence microscopy. The phosphorylations of Focal Adhesion Kinase (FAK) and Rac1 decreased in response to ZrO2 enriched medium. This corroborates the result of the crystal violet assay, which indicated a significant decrease of pre-osteoblast adhesion in responding to ZrO2 enriched medium. However, we credit this decrease on pre-osteoblast adhesion to the need to govern intracellular repertory of intracellular pathways involved with cell cycle progression, because we found a significant up-phosphorylation of Mitogen-Activated Protein Kinase (MAPK)-p38 and Cyclin-dependent kinase 2 (CDK2), while p15 (a cell cycle suppressor) decreased. Importantly, Protein phosphatase 2 A (PP2A) activity decreased, guaranteeing the significant up-phosphorylation of MAPK -p38 in response to ZrO2 enriched medium. Complementarily, there was a regulation of Matrix Metalloproteinases (MMPs) in response to Zirconia and this remodeling could affect cell phenotype by interfering on cell anchorage. Altogether, our results show a repertory of signaling molecules, which suggests that ECM remodel as a pre-requisite to pre-osteoblast phenotype by affecting their anchoring in responding to zirconia.

Notes

Acknowledgements

The authors are grateful to Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for the financial support (grants: #2015/03639-8, 2016/08888-9, 2014/22689-3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict ofinterest.

References

  1. 1.
    van der Eerden BCJ, Teti A, Zambuzzi WF. Bone, a dynamic and integrating tissue. Arch Biochem Biophys. 2014;561:1–2.CrossRefGoogle Scholar
  2. 2.
    Zambuzzi WF, Ferreira CV, Granjeiro JM, Aoyama H. Biological behavior of pre-osteoblasts on natural hydroxyapatite: a study of signaling molecules from attachment to differentiation. J Biomed Mater Res A. 2011;97:193–200.CrossRefGoogle Scholar
  3. 3.
    Coelho PG, Jimbo R. Osseointegration of metallic devices: current trends based on implant hardware design. Arch Biochem Biophys. 2014;561:99–108.CrossRefGoogle Scholar
  4. 4.
    Bezerra F, Ferreira MR, Fontes GN, da Costa Fernandes CJ, Andia DC, Cruz NC, et al. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways. Biotechnol Bioeng. 2017;114:1888–98.CrossRefGoogle Scholar
  5. 5.
    Pasold J, Markhoff J, Tillmann J, Krogull M, Pisowocki P, Bader R. Direct influence of titanium and zirconia particles on the morphology and functionality of mature human osteoclasts. J Biomed Mater Res A. 2017;105:2608–15.CrossRefGoogle Scholar
  6. 6.
    Parmigiani-Izquierdo JM, Cabaña-Muñoz ME, Merino JJ, Sánchez-Pérez A. Zirconia implants and peek restorations for the replacement of upper molars. Int J Implant Dent. 2017;3:5.CrossRefGoogle Scholar
  7. 7.
    Hafezeqoran A, Koodaryan R. Effect of Zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis. Biomed Res Int. 2017;2017:9246721.CrossRefGoogle Scholar
  8. 8.
    Gautam C, Joyner J, Gautam A, Rao J, Vajtai R. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalt Trans R Soc Chem. 2016;45:19194–215.CrossRefGoogle Scholar
  9. 9.
    Cionca N, Hashim D, Mombelli A. Zirconia dental implants: where are we now, and where are we heading? Periodontol 2000. 2017;73:241–58.CrossRefGoogle Scholar
  10. 10.
    Gapski R, Martinez EF. Behavior of MC3T3-E1 osteoblastic cells cultured on titanium and zirconia surfaces. Implant Dent. 2017;26:1–377.CrossRefGoogle Scholar
  11. 11.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods Neth. 1983;65:55–63.CrossRefGoogle Scholar
  12. 12.
    LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem U S. 1951;193:265–75.Google Scholar
  13. 13.
    Zambuzzi WF, Yano CL, Cavagis ADM, Peppelenbosch MP, Granjeiro JM, Ferreira CV. Ascorbate-induced osteoblast differentiation recruits distinct MMP-inhibitors: RECK and TIMP-2. Mol Cell Biochem Neth. 2009;322:143–50.CrossRefGoogle Scholar
  14. 14.
    Lefebvre V, Peeters-Joris C, Vaes G. Production of gelatin-degrading matrix metalloproteinases (’type IV collagenases’) and inhibitors by articular chondrocytes during their dedifferentiation by serial subcultures and under stimulation by interleukin-1 and tumor necrosis factor alpha. Biochim Biophys Acta Neth. 1991;1094:8–18.CrossRefGoogle Scholar
  15. 15.
    Ferreira CF, Carriel Gomes MC, Filho JS, Granjeiro JM, Oliveira Simoes CM, Magini R de S. Platelet-rich plasma influence on human osteoblasts growth. Clin Oral Implants Res Den. 2005;16:456–60.CrossRefGoogle Scholar
  16. 16.
    Josset Y, Oum’Hamed Z, Zarrinpour A, Lorenzato M, Adnet JJ, Laurent-Maquin D. In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J Biomed Mater Res U S. 1999;47:481–93.CrossRefGoogle Scholar
  17. 17.
    Zambuzzi WF, Bruni-Cardoso A, Granjeiro JM, Peppelenbosch MP, de Carvalho HF, Aoyama H, et al. On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways. J Cell Biochem U S. 2009;108:134–44.CrossRefGoogle Scholar
  18. 18.
    Cavagis A, Takamori E, Granjeiro J, Oliveira R, Ferreira C, Peppelenbosch M, et al. TNFalpha contributes for attenuating both Y397FAK and Y416Src phosphorylations in osteoblasts. Oral Dis Den. 2014;20:780–6.Google Scholar
  19. 19.
    Fang X-Q, Liu X-F, Yao L, Chen C-Q, Lin J-F, Gu Z-D, et al. Focal adhesion kinase regulates the phosphorylation protein tyrosine phosphatase-alpha at Tyr789 in breast cancer cells. Mol Med Rep Greece. 2015;11:4303–8.CrossRefGoogle Scholar
  20. 20.
    Thiyagarajan V, Lin S, Chia Y, Weng C. Biochimica et Biophysica Acta the autophosphorylation site of focal adhesion kinase (Y397) by molecular docking. BBA - Gen Subj Elsevier B V. 2013;1830:4091–101.CrossRefGoogle Scholar
  21. 21.
    Dixon RDS, Chen Y, Ding F, Khare SD, Prutzman KC, Schaller MD et al. New Insights into FAK signaling and localization based on detection of a FAT domain folding intermediate. Chapel Hill: University of North Carolina; 2004;12:2161–71.Google Scholar
  22. 22.
    Blangy A, Touaitahuata H, Cres G, Pawlak G. Cofilin activation during podosome belt formation in osteoclasts. PLoS One. 2012;7:e45909.CrossRefGoogle Scholar
  23. 23.
    Mitra SK, Mikolon D, Molina JE, Hsia DA, Hanson DA, Chi A, et al. Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene. 2006;25:5969–84.CrossRefGoogle Scholar
  24. 24.
    da Costa Fernandes CJ, do Nascimento AS, da Silva RA, Zambuzzi WF. Fibroblast contributes for osteoblastic phenotype in a MAPK-ERK and sonic hedgehog signaling-independent manner. Mol Cell Biochem. 2017;436:111–7.CrossRefGoogle Scholar
  25. 25.
    Fang X, Liu X, Yao L, Chen C, Lin J, Ni P, et al. New insights into FAK phosphorylation based on a FAT domain-defective mutation. PloS One. 2014;9:1–10.Google Scholar
  26. 26.
    Wolfenson H, Lavelin I, Geiger B. Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell. 2013;24:447–58.CrossRefGoogle Scholar
  27. 27.
    Wehrle-Haller B, Imhof BA. The inner lives of focal adhesions. Trends Cell Biol. 2002;12:382–9.CrossRefGoogle Scholar
  28. 28.
    Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol Engl. 2010;11:633–43.CrossRefGoogle Scholar
  29. 29.
    Kueh HY, Brieher WM, Mitchison TJ. Dynamic stabilization of actin filaments. Proc Natl Acad Sci U S A U S. 2008;105:16531–6.CrossRefGoogle Scholar
  30. 30.
    Martín-Villar E, Borda-d’Agua B, Carrasco-Ramirez P, Renart J, Parsons M, Quintanilla M, et al. Podoplanin mediates ECM degradation by squamous carcinoma cells through control of invadopodia stability. Oncogene. 2015;34:4531–44.CrossRefGoogle Scholar
  31. 31.
    Barisic S, Schmidt C, Walczak H, Kulms D. Tyrosine phosphatase inhibition triggers sustained canonical serine-dependent NFκB activation via Src-dependent blockade of PP2A. Biochem Pharmacol. 2010;80:439–47.CrossRefGoogle Scholar
  32. 32.
    Avdi NJ, Malcolm KC, Nick JA, Worthen GS. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH2-terminal kinase pathway in human neutrophils. J Biol Chem. 2002;277:40687–96.CrossRefGoogle Scholar
  33. 33.
    Oleinik NV, Krupenko NI, Krupenko SA. ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene Engl. 2010;29:6233–44.CrossRefGoogle Scholar
  34. 34.
    Bertazzo S, Zambuzzi WF, Campos DDP, Ferreira CV, Bertran CA. A simple method for enhancing cell adhesion to hydroxyapatite surface. Clin Oral Implants Res Den. 2010;21:1411–3.CrossRefGoogle Scholar
  35. 35.
    Hughes BT, Sidorova J, Swanger J, Monnat RJ, Clurman BE. Essential role for Cdk2 inhibitory phosphorylation during replication stress revealed by a human Cdk2 knockin mutation. Proc Natl Acad Sci. 2013;110:8954–9.CrossRefGoogle Scholar
  36. 36.
    Ayaydin F, Vissi E, Mészáros T, Miskolczi P, Kovács I, Fehér A, et al. Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa. Plant J. 2000;23:85–96.CrossRefGoogle Scholar
  37. 37.
    Haynes DR, Hay SJ, Rogers SD, Ohta S, Howie DW, Graves SE. Regulation of bone cells by particle-activated mononuclear phagocytes. J Bone Jt Surg Br Engl. 1997;79:988–94.CrossRefGoogle Scholar
  38. 38.
    Panagakos FS, Kumar S. Differentiation of human osteoblastic cells in culture: modulation of proteases by extracellular matrix and tumor necrosis factor-alpha. Inflammation. U S. 1995;19:423–43.Google Scholar
  39. 39.
    Wang R, Wang W, Ao L, Wang Z, Hao X, Zhang H. Benzo[a]pyrene-7,8-diol-9,10-epoxide suppresses the migration and invasion of human extravillous trophoblast HTR-8/SVneo cells by down-regulating MMP2 through inhibition of FAK/SRC/PI3K/AKT pathway. Toxicol Elsevier. 2017;386:72–83.CrossRefGoogle Scholar
  40. 40.
    Dang D, Bamburg JR, Ramos DM. ??v??3integrin and cofilin modulate K1735 melanoma cell invasion. Exp Cell Res. 2006;312:468–77.CrossRefGoogle Scholar
  41. 41.
    Oum’hamed Z, Garnotel R, Josset Y, Trenteseaux C, Laurent-Maquin D. Matrix metalloproteinases MMP-2, -9 and tissue inhibitors TIMP-1, -2 expression and secretion by primary human osteoblast cells in response to titanium, zirconia, and alumina ceramics. J Biomed Mater Res. 2004;68:114–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience InstituteUniversidade Estadual Paulista - UNESPBotucatuBrazil

Personalised recommendations