Biocompatibility of new materials based on nano-structured nitinol with titanium and tantalum composite surface layers: experimental analysis in vitro and in vivo

  • Mikhail A. Sevost’yanov
  • Elena O. Nasakina
  • Alexander S. Baikin
  • Konstantin V. Sergienko
  • Sergey V. Konushkin
  • Mikhail A. Kaplan
  • Alexey V. Seregin
  • Alexander V. Leonov
  • Valery A. Kozlov
  • Alexey V. Shkirin
  • Nikolai F. Bunkin
  • Alexey G. Kolmakov
  • Sergey V. Simakov
  • Sergey V. Gudkov
Biocompatibility Studies Original Research
Part of the following topical collections:
  1. Biocompatibility Studies


A technology for obtaining materials from nanostructured nitinol with titanium- or tantalum-enriched surface layers was developed. Surface layers enriched with titanium or tantalum were shown to provide a decrease in the formation of reactive oxygen species and long-lived protein radicals in comparison to untreated nitinol. It was determined that human peripheral vessel myofibroblasts and human bone marrow mesenchymal stromal cells grown on nitinol bases coated with titanium or tantalum-enriched surface layers exhibit a nearly two times higher mitotic index. Response to implantation of pure nitinol, as well as nano-structure nitinol with titanium or tantalum-enriched surface layers, was expressed though formation of a mature uniform fibrous capsule peripherally to the fragment. The thickness of this capsule in the group of animals subjected to implantation of pure nitinol was 1.5 and 3.0-fold greater than that of the capsule in the groups implanted with nitinol fragments with titanium- or tantalum-enriched layers. No signs of calcinosis in the tissues surrounding implants with coatings were observed. The nature and structure of the formed capsules testify bioinertia of the implanted samples. It was shown that the morphology and composition of the surface of metal samples does not alter following biological tests. The obtained results indicate that nano-structure nitinol with titanium or tantalum enriched surface layers is a biocompatible material potentially suitable for medical applications.



The authors are would like to thank Ph.D. Fadeev R.S. for helping with cell cultures and Ph.D. Fadeeva I.S. for help with animal treatment. The study was conducted with the support of a RFFR grant “14-29-10208-ofi_m” and the Russian President Program for Young Scientists “MK-4521.2018.8”. The work on optical microscopy is supported by the research topic “AAAA-A18-118021390190-1”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Buehler W, Wiley R. TiNi-ductile intermetallic compound. Trans Am Soc Met. 1962;55:269–76.Google Scholar
  2. 2.
    Castleman LS, Motzkin SM, Alicandri FP, Bonawit VL. Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res. 1976;10:695–31.CrossRefGoogle Scholar
  3. 3.
    Dotter CT, Buschmann RW, McKinney MK, Rösch J. Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology . 1983;147:259–60.CrossRefGoogle Scholar
  4. 4.
    Katsanos K, Spiliopoulos S, Karunanithy N, Krokidis M, Sabharwal T, Taylor P. Bayesian network meta-analysis of nitinol stents, covered stents, drug-eluting stents, and drug-coated balloons in the femoropopliteal artery. J Vasc Surg. 2014;59:1123–33.CrossRefGoogle Scholar
  5. 5.
    Shayan M, Chun Y. An overview of thin film nitinol endovascular devices. Acta Biomater. 2015;21:20–34.CrossRefGoogle Scholar
  6. 6.
    Duerig TW, Pelton AR, Stöckel D. The utility of superelasticity in medicine. Biomed Mater Eng. 1996;6:255–66.Google Scholar
  7. 7.
    Tian H, Schryvers D, Liu D, Jiang Q, Van Humbeeck J. Stability of Ni in nitinol oxide surfaces. Acta Biomater. 2011;7:892–99.CrossRefGoogle Scholar
  8. 8.
    Ries MW, Kampmann C, Rupprecht HJ, Hintereder G, Hafner G, Meyer J. Nickel release after implantation of the amplatzer occluder. Am Heart J. 2003;145:737–41.CrossRefGoogle Scholar
  9. 9.
    Saito M, Arakaki R, Yamada A, Tsunematsu T, Kudo Y, Ishimaru N. Molecular mechanisms of nickel allergy. Int J Mol Sci. 2016;17:E202.CrossRefGoogle Scholar
  10. 10.
    Rokicki R, Haider W, Hryniewicz T. Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells. J Mater Sci Mater Med. 2012;23:2127–39.CrossRefGoogle Scholar
  11. 11.
    Song B, Zhao X, Li S, Han C, Wei Q, Wen S, Liu J, Shi Y. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review. Front Mech Eng. 2015;10:111–25.CrossRefGoogle Scholar
  12. 12.
    Alves-Claro AP, Claro FA, Uzumaki ET. Wear resistance of nickel-titanium endodontic files after surface treatment. J Mater Sci Mater Med. 2008;19:3273–7.CrossRefGoogle Scholar
  13. 13.
    Chrzanowski W, Neel EA, Armitage DA, Zhao X, Knowles JC, Salih V. In vitro studies on the influence of surface modification of Ni-Ti alloy on human bone cells. J Biomed Mater Res A. 2010;93:1596–608.Google Scholar
  14. 14.
    Keady F, Murphy BP. Investigating the feasibility of using a grit blasting process to coat nitinol stents with hydroxyapatite. J Mater Sci Mater Med. 2013;24:97–103.CrossRefGoogle Scholar
  15. 15.
    Nandakumar D, Bendavid A, Martin PJ, Harris KD, Ruys AJ, Lord MS. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications. ACS Appl Mater Interfaces. 2016;8:6802–10.CrossRefGoogle Scholar
  16. 16.
    Sun F, Sask KN, Brash JL, Zhitomirsky I. Surface modifications of nitinol for biomedical applications. Colloids Surf B Biointerfaces. 2008;67:132–9.CrossRefGoogle Scholar
  17. 17.
    Flamini DO, Saidman SB. Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole. Mater Sci Eng C Mater Biol Appl. 2014;44:317–25.CrossRefGoogle Scholar
  18. 18.
    Zhang D, Zhang Z, Zi Z, Zhang Y, Zeng W, Chu PK. Fabrication of graded TiN coatings on nitinol occluders and effects on in vivo nickel release. Biomed Mater Eng. 2008;18:387–93.Google Scholar
  19. 19.
    Sevost’yanov MA, Fedotov AYu, Nasakina EO, Teterina AYu, Baikin AS, Sergienko Kev VS, Ivanov VE, Karp OE, Gudkov SV, Barinov SM. Kinetics of the release of antibiotics from chitosan-based biodegradable biopolymer membranes. Dokl Chem. 2015;465:278–80.CrossRefGoogle Scholar
  20. 20.
    Shabalovskaya S, Anderegg J, Van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.CrossRefGoogle Scholar
  21. 21.
    Nasakina EO, Baikin AS, Sevost’yanov MA, Kolmakov AG, Zabolotnyi VT, Solntsev KA. Properties of nanostructured titanium nickelide and composite based on it. Theor Found Chem Eng. 2014;48:477–86.CrossRefGoogle Scholar
  22. 22.
    Nasakina EO, Sevostyanov MA, Golberg MA, Dyomin KYu, Baikin AS, Goncharenko BA, Cherkasov VA, Kolmakov AG, Zabolotnyy VT. Long term corrosion tests of nanostructural nitinol of (55.91 wt% Ni, 44.03 wt% Ti) composition under static conditions: composition and structure before and after corrosion. Inorg Mater Appl Res. 2015;6:53–58.CrossRefGoogle Scholar
  23. 23.
    Nasakina EO, Sevost’yanov MA, Mikhailova AB, Gol’dberg MA, Demin KYu, Komakov AG, Zabolotnyi VT. Preparation of a nanostructured shape memory composite material for biomedical applications. Inorg Mater. 2015;51:400–4.CrossRefGoogle Scholar
  24. 24.
    Nasakina EO, Baikin AS, Sergienko KV, Sevost’yanov MA, Kolmakov AG, Goncharenko BA, Zabolotnyi VT, Fadeev RS, Fadeeva IS, Gudkov SV, Solntsev KA. Biocompatibility of nanostructured nitinol with titanium or tantalum surface composite layers formed by magnetron sputtering. Dokl Chem. 2015;461:86–88.CrossRefGoogle Scholar
  25. 25.
    Shtarkman IN, Gudkov SV, Chernikov AV, Bruskov VI. Effect of amino acids on X-ray-induced hydrogen peroxide and hydroxyl radical formation in water and 8-oxoguanine in DNA. Biochemistry. 2008;73:470–78.Google Scholar
  26. 26.
    Chernikov AV, Gudkov SV, Shtarkman IN, Bruskov VI. Oxygen effect in heat-mediated damage to DNA. Biofizika. 2007;52:244–51.Google Scholar
  27. 27.
    Gapeyev AB, Lukyanova NA, Gudkov SV. Hydrogen peroxide induced by modulated electromagnetic radiation protects the cells from DNA damage. Cent Eur J Biol. 2014;9:915–21.Google Scholar
  28. 28.
    Ivanov VE, Usacheva AM, Chernikov AV, Bruskov VI, Gudkov SV. Formation of long-lived reactive species of blood serum proteins induced by low-intensity irradiation of helium-neon laser and their involvement in the generation of reactive oxygen species. J Photochem Photobiol B. 2017;176:36–43.CrossRefGoogle Scholar
  29. 29.
    Gudkov SV, Garmash SA, Shtarkman IN, Chernikov AV, Karp OE, Bruskov VI. Long-lived protein radicals induced by X-ray irradiation are the source of reactive oxygen species in aqueous medium. Dokl Biochem Biophys. 2010;430:1–4.CrossRefGoogle Scholar
  30. 30.
    Lee CH, Vyavahare N, Zand R, Kruth H, Schoen FJ, Bianco R, Levy RJ. Inhibition of aortic wall calcification in bioprosthetic heart valves by ethanol pretreatment: biochemical and biophysical mechanisms. J Biomed Mater Res. 1998;42:30–37.CrossRefGoogle Scholar
  31. 31.
    Farrukh MA, ed. Functionalized Nanomaterials. Rijeka: InTech; 2016. p. 172.Google Scholar
  32. 32.
    Ahadi A, Sun Q. Effects of grain size on the rate‐dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 2014;76:186–97.CrossRefGoogle Scholar
  33. 33.
    Delville R, Malard B, Pilch J, Sittner P, Schryvers D. Transmission electron microscopy study of dislocation slip activity during superelastic cycling of NiTi. Int J Plast. 2010;27:282–97.CrossRefGoogle Scholar
  34. 34.
    Zhilyaev AP, Langdon TG. Using high‐pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sc. 2008;53:893–79.CrossRefGoogle Scholar
  35. 35.
    Stolyarov VV. Deformability and nanostructuring of TiNi shape‐memory alloys during electroplastic rolling. Mater Sci Eng A. 2009;503:18–20.CrossRefGoogle Scholar
  36. 36.
    Zhang YS, Wei QM, Niu HZ, Li YS, Chen C, Yu ZT, Bai XF, Zhang PX. Formation of nanocrystalline structure in tantalum by sliding friction treatment. Int J Refract Met Hard Mater. 2014;45:71–75.CrossRefGoogle Scholar
  37. 37.
    Shankar V, Mariappan K, Nagesha A, Prasad Reddy GV, Sandhya R, Mathew MD, Jayakumar T. Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels. Fusion Eng Des. 2012;87:318–24.CrossRefGoogle Scholar
  38. 38.
    Chakraborty BR, Halder SK, Maurya KK, Srivastava AK, Toutam VK, Dalai MK, Sehgal G, Singh S. Evaluation of depth distribution and characterization of nanoscale Ta/Si multilayer thin film structures. Thin Solid Films. 2012;520:6409–14.CrossRefGoogle Scholar
  39. 39.
    Zhou YM, Xie Z, Xiao HN, Hu PF, He J. Effects of deposition parameters on tantalum films deposited by direct current magnetron sputtering. Vacuum . 2009;83:286–91.CrossRefGoogle Scholar
  40. 40.
    Dorranian D, Solati E, Hantezadeh M, Ghoranneviss M, Sari A. Effects of low temperature on the characteristics of tantalum thin films. Vacuum . 2011;86:51–55.CrossRefGoogle Scholar
  41. 41.
    Bernoulli D, Müller U, Schwarzenberger M, Hauert R, Spolenak R. Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition. Thin Solid Films. 2013;548:157–61.CrossRefGoogle Scholar
  42. 42.
    Nasakina EO, Sevostyanov MA, Mikhaylova AB, Baikin AS, Sergienko KV, Leonov AV, Kolmakov AG. Formation of alpha and beta tantalum at the variation of magnetron sputtering conditions. IOP Conf Ser Mater Sci Eng. 2016;110:012042.CrossRefGoogle Scholar
  43. 43.
    Myers S, Lin J, Martins Souza R, Sproul WD, Moore JJ. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering. Surf Coat Tech. 2013;214:38–45.CrossRefGoogle Scholar
  44. 44.
    Navid AA, Hodge AM. Nanostructured alpha and beta tantalum formation—Relationship between plasma parameters and microstructure. Mater Sci Eng A. 2012;536:49–56.CrossRefGoogle Scholar
  45. 45.
    Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991;91:14S–22S.CrossRefGoogle Scholar
  46. 46.
    Lankin VZ, Tikhaze AK, Kapel’ko VI, Shepel’kova GS, Shumaev KB, Panasenko OM, Konovalova GG, Belenkov YN. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry. 2007;72:1081–90.Google Scholar
  47. 47.
    Chernikov AV, Gudkov SV, Usacheva AM, Bruskov VI. Exogenous 8-Oxo-7,8-dihydro-2′-deoxyguanosine: biomedical properties, mechanisms of action, and therapeutic potential. Biochemistry. 2017;82:1686–701.Google Scholar
  48. 48.
    Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127.CrossRefGoogle Scholar
  49. 49.
    Gudkov SV, Andreev SN, Barmina EV, Bunkin NF, Kartabaeva BB, Nesvat AP, Stepanov EV, Taranda NI, Khramov RN, Glinushkin AP. Effect of visible light on biological objects: physiological and pathophysiological aspects. Phys Wave Phenomen. 2017;25:207–13.CrossRefGoogle Scholar
  50. 50.
    Bruskov VI, Chernikov AV, Gudkov SV. Masalimov ZhK. Heat-induced activation of reducing properties of of sea water. Biofizika . 2003;48:1022–9.Google Scholar
  51. 51.
    Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep. 2016;43:607–28.CrossRefGoogle Scholar
  52. 52.
    Gudkov SV, Chernikov AV, Bruskov VI. Chemical and radiological toxicity of uranium compounds. Rus J Gen Chem. 2016;86:1531–8.CrossRefGoogle Scholar
  53. 53.
    Garmash SA, Smirnova VS, Karp OE, Usacheva AM, Berezhnov AV, Ivanov VE, Chernikov AV, Bruskov VI, Gudkov SV. Pro-oxidative, genotoxic and cytotoxic properties of uranyl ions. J Environ Radioact. 2014;127:163–70.CrossRefGoogle Scholar
  54. 54.
    Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.CrossRefGoogle Scholar
  55. 55.
    Dean RT, Gieseg S, Davies MJ. Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci. 1993;18:437–41.CrossRefGoogle Scholar
  56. 56.
    Bruskov VI, Karp OE, Garmash SA, Shtarkman IN, Chernikov AV, Gudkov SV. Prolongation of oxidative stress by long-lived reactive protein species induced by X-ray radiation and their genotoxic action. Free Radic Res. 2012;46:1280–90.CrossRefGoogle Scholar
  57. 57.
    Koyama S, Kodama S, Suzuki K, Matsumoto T, Miyazaki T, Watanabe M. Radiation-induced long-lived radicals which cause mutation and transformation. Mutat Res. 1998;421:45–54.CrossRefGoogle Scholar
  58. 58.
    Bruskov VI, Popova NR, Ivanov VE, Karp OE, Chernikov AV, Gudkov SV. Formation of long-lived reactive species of blood serum proteins by the action of heat. Biochem Biophys Res Commun. 2014;443:957–61.CrossRefGoogle Scholar
  59. 59.
    Kulkarni M, Mazare A, Gongadze E, Perutkova S, Kralj-Iglic V, Milosev I, Schmuki P, Iglic A, Mozetic M. Titanium nanostructures for biomedical applications. Nanotechnology . 2015;26:062002.CrossRefGoogle Scholar
  60. 60.
    Patil N, Lee K, Goodman SB. Porous tantalum in hip and knee reconstructive surgery. J Biomed Mater Res B Appl Biomater. 2009;89:242–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mikhail A. Sevost’yanov
    • 1
  • Elena O. Nasakina
    • 1
  • Alexander S. Baikin
    • 1
  • Konstantin V. Sergienko
    • 1
  • Sergey V. Konushkin
    • 1
  • Mikhail A. Kaplan
    • 1
  • Alexey V. Seregin
    • 1
    • 2
  • Alexander V. Leonov
    • 1
    • 2
  • Valery A. Kozlov
    • 2
    • 3
  • Alexey V. Shkirin
    • 3
    • 4
  • Nikolai F. Bunkin
    • 2
    • 3
  • Alexey G. Kolmakov
    • 1
  • Sergey V. Simakov
    • 1
  • Sergey V. Gudkov
    • 3
    • 5
    • 6
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.A.M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  4. 4.National Research Nuclear University MEPhIMoscowRussia
  5. 5.Depatment of BiophysicsLobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia
  6. 6.Moscow Regional Research and Clinical Institute (MONIKI)MoscowRussia

Personalised recommendations