Advertisement

Osteoblastic cell response on high-rough titanium coatings by cold spray

  • A. M. Vilardell
  • N. Cinca
  • N. Garcia-Giralt
  • S. Dosta
  • I. G. Cano
  • X. Nogués
  • J. M. Guilemany
Biocompatibility Studies Original Research
Part of the following topical collections:
  1. Biocompatibility Studies

Abstract

Highly rough and porous commercially pure titanium coatings have been directly produced for first time by the cold spray technology, which is a promising technology in front of the vacuum plasma spray for oxygen sensitive materials. The wettability properties as well as the biocompatibility evaluation have been compared to a simply sand blasted Ti6Al4V alloy substrate. Surface topographies were analysed using confocal microscopy. Next, osteoblast morphology (Phalloidin staining), proliferation (MTS assay), and differentiation (alkaline phosphatase activity) were examined along 1, 7 and 14 days of cell culture on the different surfaces. Finally, mineralization by alizarin red staining was quantified at 28 days of cell culture. The contact angle values showed an increased hydrophilic behaviour on the as-sprayed surface with a good correlation to the biological response. A higher cell viability, proliferation and differentiation were obtained for highly rough commercial pure titanium coatings in comparison with sand blasted substrates. Cell morphology was similar in all coatings tested; at 14 days both samples showed extended filopodia. A higher amount of calcium-rich deposits was detected on highly rough surfaces. In summary, in-vitro results showed an increase of biological properties when surface roughness increases.

Notes

Acknowledgements

The authors want to thank the Spanish MINECO for financial support through project MAT2013-46755-R and the Generalitat de Catalunya for the project 2014 SGR 1558, and University of Barcelona for the award of a scholarship that has helped the development of this research. This work was also supported by the Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF; RD12/0043/0022), the Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES; CB16/10/00245) and FEDER funds.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict ofinterest.

References

  1. 1.
    Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocompatible implant surfaces. Prog Mater Sci. 2013;58:261–326.CrossRefGoogle Scholar
  2. 2.
    Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60:46–9.CrossRefGoogle Scholar
  3. 3.
    Pramanik S, Agarwal AK, Rai KN. Chronology of total hip joint replacement and materials development. Artif Organs. 2005;19:15–26.Google Scholar
  4. 4.
    Mjöberg B. Theories of wear and loosening in hip prostheses. Wear-induced loosening vs loosening-induced wear—a review. Acta Orthop Scand. 1994;65:361–71.CrossRefGoogle Scholar
  5. 5.
    Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A. 2006;76A:323–34.CrossRefGoogle Scholar
  6. 6.
    Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials. 2004;25:1429–38.CrossRefGoogle Scholar
  7. 7.
    Gnedenkov SV, Sinebryukhov SL, Egorkin VS, Mashtalyar DV, Alpysbaeva DA, Boinovich LB. Wetting and electrochemical properties of hydrophobic and superhydrophobic coatings on titanium. Colloids Surf A. 2011;383:61–6.CrossRefGoogle Scholar
  8. 8.
    Mekayarajjananonth T, Winkler S. Contact angle measurement on dental implant biomaterials. J Oral Implantol. 1999;25:230–6.CrossRefGoogle Scholar
  9. 9.
    Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res. 1995;29:389–401.CrossRefGoogle Scholar
  10. 10.
    Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, Ramón-Torregrosa PJ, Díaz-Rodríguez L, García-Martínez O, Vallecillo-Capilla M, Ruiz C, Cabrerizo-Vílchez MA. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A. 2010;365:222–9.CrossRefGoogle Scholar
  11. 11.
    Le Guehennec L, Lopez-Heredia M-A, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008;4:535–43.CrossRefGoogle Scholar
  12. 12.
    Wall I, Donos N, Carlqvist K, Jones F, Brett P. Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone. 2009;45:17–26.CrossRefGoogle Scholar
  13. 13.
    Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, Grolleau B, Mercier L, Chappard D. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507.CrossRefGoogle Scholar
  14. 14.
    Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32:3395–403.CrossRefGoogle Scholar
  15. 15.
    Mariscal-Muñoz E, Costa CAS, Tavares HS, Bianchi J, Hebling J, Machado JPB, Lerner UH, Souza PPC. Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation. Clin Oral Investig. 2016;20:503–11.CrossRefGoogle Scholar
  16. 16.
    Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78A:97–103.CrossRefGoogle Scholar
  17. 17.
    Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.CrossRefGoogle Scholar
  18. 18.
    Muth J, Poggie M, Kulesha G, Michael Meneghini R. Novel highly porous metal technology in artificial hip and knee replacement: processing methodologies and clinical applications. JOM. 2013;65:318–25.CrossRefGoogle Scholar
  19. 19.
    Murray I. Differential porosity prosthetic hip system. Google Patents, 2007. https://www.google.ch/patents/US20070043446.
  20. 20.
    Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implant Res. 2009;20:172–84.CrossRefGoogle Scholar
  21. 21.
    Lombardi AV, Berend KR, Mallory TH, Skeels MD, Adams JB. Survivorship of 2000 tapered titanium porous plasma-sprayed femoral components. Clin Orthop Relat Res. 2009;467:146–54.CrossRefGoogle Scholar
  22. 22.
    Ellison B, Berend KR, Lombardi AV, Mallory TH. Tapered titanium porous plasma-sprayed femoral component in patients aged 40 years and younger. J Arthroplast. 2006;21:32–7.CrossRefGoogle Scholar
  23. 23.
    Taba Júnior M, Novaes AB, Souza SL, Grisi MF, Palioto DB, Pardini LC. Radiographic evaluation of dental implants with different surface treatments: an experimental study in dogs. Implant Dent. 2003;12:252–8.CrossRefGoogle Scholar
  24. 24.
    Borsari V, Giavaresi G, Fini M, Torricelli P, Tschon M, Chiesa R, Chiusoli L, Salito A, Volpert A, Giardino R. Comparative in vitro study on a ultra-high roughness and dense titanium coating. Biomaterials. 2005;26:4948–55.CrossRefGoogle Scholar
  25. 25.
    Frauchiger VM, Eitel F, Tommasini R, Jaeggi C, Wippich T, Jaeggi S. An open-porous titanium coating for advanced osseointegration. 55th Annual meeting orthopaedic research society.Google Scholar
  26. 26.
    Endres S, Wilke M, Knöll P, Frank H, Kratz M, Wilke A. Correlation of in vitro and in vivo results of vacuum plasma sprayed titanium implants with different surface topography. J Mater Sci Mater Med. 2008;19:1117–25.CrossRefGoogle Scholar
  27. 27.
    Braem A, Chaudhari A, Vivan Cardoso M, Schrooten, Duyck J, Vleugels J. Peri- and intra-implant bone response to microporous Ti coatings with surface modification. Acta Biomater. 2014;10:989–95.CrossRefGoogle Scholar
  28. 28.
    Salemyr M, Muren O, Eisler T, Bodén H, Chammout G, Stark A, Sköldenberg O. Porous titanium construct cup compared to porous coated titanium cup in total hip arthroplasty. A randomised controlled trial. Int Orthop. 2015;39(5):823–32.CrossRefGoogle Scholar
  29. 29.
    Lakstein D1, Backstein D, Safir O, Kosashvili Y, Gross AE. Revision total hip arthroplasty with a porous-coated modular stem: 5 to 10 years followup. Clin Orthop Relat Res. 2010;468(5):1310–5.CrossRefGoogle Scholar
  30. 30.
    Moridi A, Hassani-Gangaraj SM, Guagliano M, Dao M. Cold spray coating: review of material systems and future perspectives. Surf Eng. 2014;30:369–95.CrossRefGoogle Scholar
  31. 31.
    Sun J, Han Y, Cui K. Innovative fabrication of porous titanium coating on titanium by cold spraying and vacuum sintering. Mater Lett. 2008;62:3623–5.CrossRefGoogle Scholar
  32. 32.
    Qiu D, Zhang M, Grøndahl L. A novel composite porous coating approach for bioactive titanium-based orthopedic implants. J Biomed Mater Res. 2013;101A:862–72.CrossRefGoogle Scholar
  33. 33.
    Vilardell AM, Cinca N, Concustell A, Dosta S, Cano IG, Guilemany JM. Cold spray as an emerging technology for biocompatible and antibacterial coatings: state of art. J Mate Sci. 2015;50:4441–62.CrossRefGoogle Scholar
  34. 34.
    Dosta S, Cinca N, Garcia J, Guilemany JM. Ti Deposition onto Ti6Al4V alloy by cold-gas spraying in medical engineering ESB2009. European Conference on Biomaterials. Ref 1212. Publicación en CD.p. 1. Lausanne; 2009.Google Scholar
  35. 35.
    Guilemany JM, Cinca N, Dosta S, Cano IG. Intelectual property: feasibility of cold gas spraying to produce high roughness high porous titanium coatings for metallic prosthesis, Ref Number 1870 -. Universitat de Barcelona. Legal Deposit: 17/10/2014, Spain, 2014Google Scholar
  36. 36.
    Vilardell AM. Thesis dissertation. Functionalized coatings by cold spray for joint prosthesis. University of Barcelona, 2016.Google Scholar
  37. 37.
    Nàcher M, Aubia J, Serrano S, Mariñoso ML, Hernández J, Bosch J, Díez A, Puig JM, Lloveras J. Effect of cyclosporine A on normal human osteoblasts in vitro. Bone Miner. 1994;26:231–43.CrossRefGoogle Scholar
  38. 38.
    Van Steenkiste TS, Smith JR, Teets RE. Aluminum coatings via kinetic spray with relatively large power particles. Surf Coat Technol. 2002;154:237–52.CrossRefGoogle Scholar
  39. 39.
    Champagne VK. The cold spray materials deposition process: fundamentals and applications. Cambridge: Wooghead; 2007.40Google Scholar
  40. 40.
    Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016;31:425–34.CrossRefGoogle Scholar
  41. 41.
    Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem Res. 1936;28:988–94.CrossRefGoogle Scholar
  42. 42.
    Kulkarni M, Patil-Sen Y, Junkar I, Kulkarni CV, Lorenzetti M, Iglič A. Wettability studies of topologicallly distinct titanium surfaces. Colloids Surf B Biointerfaces. 2015;129:47–53.CrossRefGoogle Scholar
  43. 43.
    Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–82.CrossRefGoogle Scholar
  44. 44.
    Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, Dean DD, Schwartz Z, Boskey AL. Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int. 2002;71:519–29.CrossRefGoogle Scholar
  45. 45.
    Borsari V, Giavaresi G, Fini M, Torricelli P, Tschon M, Chiesa R. Comparative in vitro study on a ultra-high roughness and dense titanium coating. Biomaterials. 2005;26:4948–55.CrossRefGoogle Scholar
  46. 46.
    Borsari V, Giavaresi G, Fini M, Torricelli P, Salito A, Chiesa R, Chiusoli L, Volpert A, Rimondini L, Giardino R. Physical characteriztion of different-roughness tianium surfaces, with and without hydroxyapatite coating, and their effect on human osteoblast-like cells. J Biomed Mater Res. 2005;75B:359–68.CrossRefGoogle Scholar
  47. 47.
    Mendonça DBS, Miguez PA, Mendonça GA, Yamauchi M, Aragão FJL, Cooper LF. Titanium surface topography affects collagen biosynthesis of adherent cells. Bone. 2011;49:463–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. M. Vilardell
    • 1
  • N. Cinca
    • 1
  • N. Garcia-Giralt
    • 2
  • S. Dosta
    • 1
  • I. G. Cano
    • 1
  • X. Nogués
    • 2
  • J. M. Guilemany
    • 1
  1. 1.Centre de Projecció Tèrmica (CPT), Dpt. Ciència dels Materials i Enginyeria Metal.lúrgicaUniversitat de BarcelonaBarcelonaSpain
  2. 2.IMIM (Institut Hospital del Mar d’Investigacions Mèdiques)RETICEFBarcelonaSpain

Personalised recommendations