Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes

  • Rita López-CebralEmail author
  • Guangjia Peng
  • Lara L. Reys
  • Simone S. Silva
  • Joaquim M. Oliveira
  • Jie Chen
  • Tiago H. Silva
  • Rui L. Reis
Delivery Systems Original Research
Part of the following topical collections:
  1. Delivery Systems


Oral administration of drugs presents important limitations, which are frequently not granted the importance that they really have. For instance, hepatic metabolism means an important drug loss, while some patients have their ability to swell highly compromised (i.e. unconsciousness, cancer…). Sublingual placement of an accurate Pharmaceutical Dosage Form is an attractive alternative. This work explores the use of the β-chitosan membranes, from marine industry residues, composed with marine sediments for dual sublingual drug delivery. As proof of concept, the membranes were loaded with a hydrophilic (gentamicin) and a hydrophobic (dexamethasone) drug. The physico-chemical and morphological characterization indicated the successful incorporated of diatomaceous earth within the chitosan membranes. Drug delivery studies showed the potential of all formulations for the immediate release of hydrophilic drugs, while diatomaceous earth improved the loading and release of the hydrophobic drug. These results highlight the interest of the herein developed membranes for dual drug delivery.



The research leading to these results has received funding from Erasmus Mundus Joint Programmes, ERDF / POCTEP 2007–2013 under project 0687_NOVOMAR_1_P, from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement number REGPOT-CT2012-316331-POLARIS, and from the North Portugal Regional Operational Programme (ON.2 – O Novo Norte), within the National Strategic Reference Framework (QREN 2007-2013) under the project NORTE-01-0124-FEDER-000018. Portuguese Foundation for Science and Technology is also acknowledged for the post-doctoral fellowship SFRH/BPD/112140/2015, for the doctoral fellowship SFRH/BD/112139/2015 and for the funds provided under the program Investigador FCT 2012 (IF/00423/2012). Dr. Hélder Santos (University of Helsinki) is also acknowledged for valuable discussions on the concept.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10856_2018_6025_MOESM1_ESM.docx (4.4 mb)
Supplementary Information


  1. 1.
    Schwen LO, Krauss M, Niederalt C, Gremse F, Kiessling F, Schenk A, Preusser T, Kuepfer L. Spatio-temporal simulation of first pass drug perfusion in the liver. PLoS Comput Biol. 2014;10:e1003499.CrossRefGoogle Scholar
  2. 2.
    Prot JM, Maciel L, Bricks T, Merlier F, Cotton J, Paullier P, Bois FY, Leclerc E. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol Bioeng. 2014;111:2027–40.CrossRefGoogle Scholar
  3. 3.
    Rogus-Pulia N, Rusche N, Hind JA, Zielinski JA, Gangnon R, Safdar N, Robbins J. Effects of device-facilitated isometric progressive resistance oropharyngeal therapy on swallowing and health-related outcomes in older adults with dysphagia. J Am Geriatr Soc. 2016;64:417–24.CrossRefGoogle Scholar
  4. 4.
    Tabor L, Gaziano J, Watts S, Robison R, Plowman EK. Defining swallowing-related quality of life profiles in individuals with amyotrophic lateral sclerosis. Dysphagia. 2016;31:376–82.CrossRefGoogle Scholar
  5. 5.
    Yang CJ, Roh J-L, Choi KH, Kim M-J, Choi S-H, Nam SY, Kim SY. Pretreatment Dysphagia Inventory and videofluorographic swallowing study as prognostic indicators of early survival outcomes in head and neck cancer. Cancer. 2015;121:1588–98.CrossRefGoogle Scholar
  6. 6.
    Murphy B, Deng J. Advances in supportive care for late effects of head and neck cancer. J Clin Oncol. 2015;33:3314–21.CrossRefGoogle Scholar
  7. 7.
    Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv Drug Deliv Rev. 2014;73:50–62.CrossRefGoogle Scholar
  8. 8.
    Wang Y, Wang Z, Zuo Z, Tomlinson B, Lee BTK, Bolger MB, Chow MSS. Clinical pharmacokinetics of buffered propranolol sublingual tablet (Promptol™)—Application of a new “physiologically based” model to assess absorption and disposition. AAPS J. 2013;15:787–96.CrossRefGoogle Scholar
  9. 9.
    Blaesi AH, Saka N. Melt-processed polymeric cellular dosage forms for immediate drug release. J Control Release. 2015;220:397–405.CrossRefGoogle Scholar
  10. 10.
    Goswami T, Jasti B, Li X. Sublingual drug delivery. Crit Rev Ther Drug Carr Syst. 2008;25:449–84.CrossRefGoogle Scholar
  11. 11.
    Fu Y-h, Jiao Y-Y, He J-s, Giang G-Y, Zhang W, Yan Y-F, Ma Y, Hua Y, Zhang Y, Peng X-L, Shi C-X, Hong T. Sublingual administration of a helper-dependent adenoviral vector expressing the codon-optimized soluble fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in mice. Antivir Res. 2014;105:72–9.CrossRefGoogle Scholar
  12. 12.
    Sheng J, He H, Han L, Qin J, Chen S, Ru G, Li R, Yang P, Wang J, Yang VC. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release. 2016;233:181–90.CrossRefGoogle Scholar
  13. 13.
    Cerchiara T, Abruzzo A, Parolin C, Vitali B, Bigucci F, Gallucci MC, Nicoletta FP, Luppi B. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym. 2016;143:124–30.CrossRefGoogle Scholar
  14. 14.
    Mazzarino L, Coche-Guérente L, Labbé P, Lemos-Senna E, Borsali R. On the mucoadhesive properties of chitosan-coated polycaprolactone nanoparticles loaded with curcumin using quartz crystal microbalance with dissipation monitoring. J Biomed Nanotechnol. 2014;10:787–94.CrossRefGoogle Scholar
  15. 15.
    Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9:1837–42.CrossRefGoogle Scholar
  16. 16.
    Nur M, Ramchandran L, Vasiljevic T. Tragacanth as an oral peptide and protein delivery carrier: characterization and mucoadhesion. Carbohydr Polym. 2016;143:223–30.CrossRefGoogle Scholar
  17. 17.
    Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 2007;28:2233–43.CrossRefGoogle Scholar
  18. 18.
    Reys LL, Silva SS, Oliveira JM, Caridade SG, Mano JF, Silva TH, Reis RL. Revealing the potential of squid chitosan-based structures for biomedical applications. Biomed Mater. 2013;8:045002.CrossRefGoogle Scholar
  19. 19.
    Maeda H, Ishida EH. Hydrothermal preparation of diatomaceous earth combined with calcium silicate hydrate gels. J Hazard Mater. 2011;185:858–61.CrossRefGoogle Scholar
  20. 20.
    Milović M, Simović S, Lošić D, Dashevskiy A, Ibrić S. Solid self-emulsifying phospholipid suspension (SSEPS) with diatom as a drug carrier. Eur J Pharm Sci. 2014;63:226–32.CrossRefGoogle Scholar
  21. 21.
    Wen ZQ, Li M, Li F, Zhu SJ, Liu XY, Zhang YX, Kumeria T, Losic D, Gao Y, Zhang W, He SX. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors. Dalton Trans. 2016;45:936–42.CrossRefGoogle Scholar
  22. 22.
    Poulsen N, Sumper M, Kröger N. Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci USA. 2003;100:12075–80.CrossRefGoogle Scholar
  23. 23.
    Bäuerlein E. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed Engl. 2003;42:614–41.CrossRefGoogle Scholar
  24. 24.
    Lopez PJ, Desclés J, Allen AE, Bowler C. Prospects in diatom research. Curr Opin Biotechnol. 2005;16:180–6.CrossRefGoogle Scholar
  25. 25.
    Bariana M, Aw MS, Kurkuri M, Losic D. Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int J Pharm. 2013;443:230–41.CrossRefGoogle Scholar
  26. 26.
    Zhang H, Shahbazi M-A, Mäkilä EM, da Silva TH, Reis RL, Salonen JJ, Hirvonen JT, Santos HA. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials. 2013;34:9210–9.CrossRefGoogle Scholar
  27. 27.
    López-Cebral R, Martin-Pastor M, Paolicelli P, Casadei MA, Seijo B, Sanchez A. Application of NMR spectroscopy in the development of a biomimetic approach for hydrophobic drug association with physical hydrogels. Colloids Surf B Biointerfaces. 2014;115:391–9.CrossRefGoogle Scholar
  28. 28.
    Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7.CrossRefGoogle Scholar
  29. 29.
    Liu P, De Wulf O, Laru J, Heikkilä T, van Veen B, Kiesvaara J, Hirvonen J, Peltonen L, Laaksonen T. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech. 2013;14:748–56.CrossRefGoogle Scholar
  30. 30.
    Silva T, Alves A, Ferreira B, Oliveira J, Reys L, Ferreira R, Sousa R, Silva S, Mano J, Reis R. Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev. 2012;57:276–306.CrossRefGoogle Scholar
  31. 31.
    Oliveira NM, Reis RL, Mano JF. Superhydrophobic surfaces engineered using diatomaceous earth. ACS Appl Mater Interfaces. 2013;5:4202–8.CrossRefGoogle Scholar
  32. 32.
    Holmes SM, Graniel-Garcia BE, Foran P, Hill P, Roberts EPL, Sakakini BH, Newton JM. A novel porous carbon based on diatomaceous earth. Chem Commun (Camb). 2006;5:2662–3.CrossRefGoogle Scholar
  33. 33.
    Foo CWP, Huang J, Kaplan DL. Lessons from seashells: silica mineralization via protein templating. Trends Biotechnol. 2004;22:577–85.CrossRefGoogle Scholar
  34. 34.
    Losic D, Yu Y, Aw MS, Simovic S, Thierry B, Addai-Mensah J. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem Commun (Camb). 2010;46:6323–5.CrossRefGoogle Scholar
  35. 35.
    Ivanova EP, Truong VK, Webb HK, Baulin VA, Wang JY, Mohammodi N, Wang F, Fluke C, Crawford RJ. Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Sci Rep. 2011;1:165.CrossRefGoogle Scholar
  36. 36.
    Kubiaka KJ, Wilsona MCT, Mathia TG, Carva P. Wettability versus roughness of engineering surfaces. Wear. 2011;271:523–8.CrossRefGoogle Scholar
  37. 37.
    Yuan Y, Lee R Contact angle and wetting properties. In: Bracco G, Holst B, editors. Surface Science Techniques. Springer-Verlag, Berlin, Heidelberg, 2013.Google Scholar
  38. 38.
    Moita AS, Moreira ALN. Influence of surface properties on the dynamic behavior of impacting droplets. 2018.Google Scholar
  39. 39.
    Comelles J, Estévez M, Martínez E, Samitier J. The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion. Nanomedicine. 2010;6:44–51.CrossRefGoogle Scholar
  40. 40.
    Wang Y, Yin S, Ren L, Zhao L. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect. Biomed Mater. 2009;4:035003.CrossRefGoogle Scholar
  41. 41.
    Wang H, Shi H, Li Y, Wang Y. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion. PLoS ONE. 2014;9:e107062.CrossRefGoogle Scholar
  42. 42.
    Celebi H, Kurt A. Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym. 2015;133:284–93.CrossRefGoogle Scholar
  43. 43.
    Chaisena A, Rangsriwatananon K. Effects of thermal and acid treatments on some physico-chemical properties of lampang diatomite. Suranaree J. Sci. Technol. 2004;11:289–99.Google Scholar
  44. 44.
    Ma S, Chen Z, Qiao F, Sun Y, Yang X, Deng X, Cen L, Cai Q, Wu M, Zhang X, Gao P. Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane. J Dent. 2014;42:1603–12.CrossRefGoogle Scholar
  45. 45.
    Ma B, Li X, Qin A, He C. A comparative study on the chitosan membranes prepared from glycine hydrochloride and acetic acid. Carbohydr Polym. 2013;91:477–82.CrossRefGoogle Scholar
  46. 46.
    Sarrazin B, Brossard R, Guenoun P, Malloggi F. Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young’s modulus. Soft Matter. 2016;12:2200–7.CrossRefGoogle Scholar
  47. 47.
    Abdel Fattah AR, Ghosh S, Puri IK. Printing three-dimensional heterogeneities in the elastic modulus of an elastomeric matrix. ACS Appl Mater Interfaces. 2016;8:11018–23.CrossRefGoogle Scholar
  48. 48.
    Humbert S, Lame O, Séguéla R, Vigier G. A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers. Polym (Guildf). 2011;52:4899–909.CrossRefGoogle Scholar
  49. 49.
    Mogilevskaya E, Akopova T, Zelenetskii A, Ozerin A. The crystal structure of chitin and chitosan. Polym Sci Ser A. 2006;48:116–23.CrossRefGoogle Scholar
  50. 50.
    Amin KAM. in het Panhuis M. Reinforced materials based on chitosan, TiO2 and Ag composites. Polymers. 2012;4:590.CrossRefGoogle Scholar
  51. 51.
    Seethalakshmi C, Reddy RCJ, Asifa N, Prabhu S. Correlation of salivary pH, incidence of dental caries and periodontal status in diabetes mellitus patients: a cross-sectional study. J Clin Diagn Res. 2016;10:ZC12–4.Google Scholar
  52. 52.
    Larsen MJ, Jensen AF, Madsen DM, Pearce EIF. Individual variations of pH, buffer capacity, and concentrations of calcium and phosphate in unstimulated whole saliva. Arch Oral Biol. 1999;44:111–7.CrossRefGoogle Scholar
  53. 53.
    Nadermann NK, Chan EP, Stafford CM. Bilayer mass transport model for determining swelling and diffusion in coated, ultrathin membranes. ACS Appl Mater Interfaces. 2015;7:3492–502.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.3B’s Research Group – Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e TecnologiaGuimarãesPortugal
  2. 2.ICVS/3B’s – PT Goverment Assciate LaboratoryGuimarãesPortugal
  3. 3.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina

Personalised recommendations