Skip to main content

Еlectrospun сellulose acetate membranes decorated with curcumin-PVP particles: preparation, antibacterial and antitumor activities

Abstract

Curcumin (Curc) exhibits anti-inflammatory, antibacterial and antitumor activity. However, its clinical application is limited by its poor bioavailability related to its extremely low water solubility. Novel materials allowing enhanced release of Curc in aqueous medium were obtained. The new materials consisted of electrospun fibers from cellulose acetate (CA) (mean fiber diameter ca. 780 nm ± 110 nm) with electrosprayed Curc/polyvinylpyrrolidone (Curc/PVP) particles. Scanning electron microscopy (SEM) showed that separated and evenly distributed particles of Curc/PVP were deposited on the surface of the mats and on the inner layers of the mat. X-ray diffraction studies showed that Curc was in amorphous state. In vitro studies demonstrated that Curc release was facilitated from Curc/PVP-on-CA mats (ca. 78% for 24 h) compared with the materials in which Curc was incorporated in CA fibers (17% for 24 h). Moreover, the curcumin-containing materials exhibited antibacterial activity against Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). Curc/PVP-on-CA fibrous mats exhibited high in vitro cytotoxicity towards HeLa tumor cells. Therefore, the obtained materials are promising for antibacterial wound dressing applications as well as for application in local treatment of cervical tumors.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Wang H, Hao L, Wang P, Chen M, Jiang S, Jiang S. Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloid. 2017;63:437–46.

    Article  Google Scholar 

  2. Ak T, Gulcin I, Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174:27–37.

    Article  Google Scholar 

  3. Yakub G, Toncheva A, Manolova N, Rashkov I, Danchev D, Kussovski V, Electrospun polylactide-based materials for curcumin release: photostability, antimicrobial activity, and anticoagulant effect. J Appl Polym Sci. 2015;133:1–11.

    Google Scholar 

  4. Fadus MC, Lau C, Bikhchandani J, Lynch HT, Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2017;7:339–46.

    Article  Google Scholar 

  5. Sathuvan M, Thangam R, Gajendiran M, Vivek R, Balasubramanian S, Nagaraj S, Gunasekaran P, Madhan B, Rengasamy R. κ-Carrageenan: an effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohyd Polym. 2017;160:184–93.

    Article  Google Scholar 

  6. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB, Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.

    Article  Google Scholar 

  7. Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm. 2017;112:1–17.

    Article  Google Scholar 

  8. Bock N, Woodruff MA, Hutmacher DW, Dargaville TR, Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers. 2011;3:131–49.

    Article  Google Scholar 

  9. Ranjbar-Mohammadi M, Rabbani S, Hajir Bahrami S, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mat Sci Eng C. 2016;69:1183–91.

    Article  Google Scholar 

  10. Chou S, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220:584–91.

    Article  Google Scholar 

  11. Sedghi R, Shaabani A, Mohammadi Z, Samadi FY, Isaei E. Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohyd Polym. 2017;159:1–10.

    Article  Google Scholar 

  12. Tsekova PB, Spasova MG, Manolova NE, Markova ND, Rashkov IB. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng C. 2017;73:206–14.

    Article  Google Scholar 

  13. Yakub G, Toncheva A, Manolova N, Rashkov I, Kussovski V, Danchev D, Curcumin-loaded poly(L-lactide-co-D,L-lactide) electrospun fibers: preparation and antioxidant, anticoagulant, and antibacterial properties. J Bioact Compat Pol. 2014;29:607–27.

    Article  Google Scholar 

  14. Paradkar A, Ambike AA, Jadhav BK, Mahadik KR, Characterization of curcumin–PVP solid dispersion obtained by spray drying. Int J Pharm. 2004;271:281–6.

    Article  Google Scholar 

  15. Wan S, Sun Y, Qi X, Tan F, Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech. 2012;13:159–66.

    Article  Google Scholar 

  16. Rasband WS (1997-2016) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/.

  17. Spasova M, Mincheva R, Paneva D, Manolova N, Rashkov I, Perspectives on: criteria for complex evaluation of the morphology and alignment of electrospun polymer nanofibers. J Bioact Compat Polym. 2006;21:465–79.

    Article  Google Scholar 

  18. Dovigo L, Pavarina A, Ribeiro A, Brunetti I, Costa C, Jacomassi D, Bagnato V, Kurachi C, Investigation of the photodynamic effects of curcumin against candida albicans. Photochem Photobiol. 2011;87:895–903.

    Article  Google Scholar 

  19. Mosmann T, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  20. Nguyen H, Ha P, Nguyen A, Nguyen D, Do H, Thi Q, Thi M. Curc as fluorescent probe for directly monitoring in vitro uptake of Curc combined paclitaxel loaded PLA-TPGS nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2016;7:1–6.

    Google Scholar 

  21. Kakran M, Sahoo N, Tan Y, Li L. Ternary dispersions to enhance solubility of poorly water soluble antioxidants. Colloid Surf A. 2013;433:111–21.

    Article  Google Scholar 

  22. Kaewnopparat N, Kaewnopparat S, Jangwang A, Maneenaun D, Chuchome T, Panichayupakaranant P. Increased solubility, dissolution and physicochemical studies of curcumin-polyvinylpyrrolidone K-30 solid dispersions. WASET. 2009;3:210–5.

    Google Scholar 

  23. Quirós J, Boltes K, Rosal R, Bioactive applications for electrospun fibers. Polym Rev. 2016;56:631–67.

    Article  Google Scholar 

  24. Toncheva A, Spasova M, Paneva D, Manolova N, Rashkov I, Polylactide (PLA)-based electrospun fibrous materials containing ionic drugs as wound dressing materials: a review. Int J Polym Mater Polym Biomater. 2014;63:657–71.

    Article  Google Scholar 

  25. Gowthamarajan K, Singh S. Dissolution testing for poorly soluble drugs: a continuing perspective. Dissolut Technol. 2010;17:24–32.

    Article  Google Scholar 

  26. Cao Z, Luo X, Zhang H, Fu Z, Shen Z, Cai N, Xue Y, Yu F, A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose. 2016;23:1349–61.

    Article  Google Scholar 

  27. Liu H, Hsieh YL, Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys. 2002;40:2119–29.

    Article  Google Scholar 

  28. Son W, Youk J, Lee T, Park W. Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci Part B Polym Phys. 2004;42:5–11.

    Article  Google Scholar 

  29. Frey MW, Electrospinning cellulose and cellulose derivatives. Polym Rev. 2008;48:378–91.

    Article  Google Scholar 

  30. Li Z, Wang C, One-dimensional nanostructures, electrospinning technique and unique nanofibers. Springer Briefs in Materials. 2013; https://doi.org/10.1007/978-3-642-36427-3_2, Chapter 2.

  31. Wu Y, Kennedy SJ, Clark RL, Polymeric particle formation through electrospraying at low atmospheric pressure. J Biomed Mater Res Part B Appl Biomater. 2009;90:381–7.

    Google Scholar 

  32. Bauer JF, Pharmaceutical Solids—The Amorphou Phase. J Valid Technol. 2009;2009:63–8.

  33. Wang X, Chen Z, Shen Z, Dynamic behavior of polymer surface and the time dependence of contact angle. Sci China Ser B. 2005;48:553–9.

    Article  Google Scholar 

  34. Araújo N, Fontana C, Bagnato V, Gerbi M, Photodynamic antimicrobial therapy of Curc in biofilms and carious dentine. Lasers Med Sci. 2014;29:629–35.

    Article  Google Scholar 

  35. Jin H, Qiao F, Wang Y, Xu Y, Shang Y, Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep. 2015;34:2782–9.

    Article  Google Scholar 

  36. Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. J Steroid Biochem Mol Biol. 2014;143:11–8.

    Article  Google Scholar 

  37. Ravindran J, Prasad S, Aggarwal B, Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?. AAPS J. 2009;11:495–510.

    Article  Google Scholar 

  38. Srivastava C, Purwar R. Fabrication of robust Antheraea assama fibroin nanofibrous mat using ionic liquid for skin tissue engineering. Mater Sci Eng C. 2016;68:276–90.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Fund of Bulgaria for the financial support (Grant number DFNI–T02/1-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena Manolova.

Ethics declarations

Conflict of interest

The authors declare that they have no onflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsekova, P., Spasova, M., Manolova, N. et al. Еlectrospun сellulose acetate membranes decorated with curcumin-PVP particles: preparation, antibacterial and antitumor activities. J Mater Sci: Mater Med 29, 9 (2018). https://doi.org/10.1007/s10856-017-6014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-6014-4