Skip to main content

Advertisement

Log in

Multifunctional decoration of alpha-tocopheryl succinate-based NP for cancer treatment: effect of TPP and LTVSPWY peptide

  • Emerging Group Leaders: Research and Reflections on Career Goals
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Author Correction to this article was published on 12 October 2017

This article has been updated

Abstract

Active targeting not only of a specific cell but also a specific organelle maximizes the therapeutic activity minimizing adverse side effects in healthy tissues. The present work describes the synthesis, characterization, and in vitro biological activity of active targeting nanoparticles (NP) for cancer therapy based on α-tocopheryl succinate (α-TOS), a well-known mitocan, that selectively induces apoptosis of cancer cells and proliferalting endothelial cells. Human epidermal growth factor receptor 2 (HER2) targeting peptide LTVSPWY (PEP) and triphenylphosphonium lipophilic cation (TPP) were conjugated to a previously optimized RAFT block copolymer that formed self-assembled NP of appropriate size for this application and low polydispersity by self-organized precipitation method. PEP and TPP were included in order to target not only HER2 positive cancer cells, but also the mitochondria of these cancer cells, respectively. The in vitro experiments demonstrated the faster incorporation of the active-targeting NP and the higher accumulation of TPP-bearing NP in the mitochondria of MDA-MB-453 HER2 positive cancer cells compared to non-decorated NP. Moreover, the encapsulation of additional α-TOS in the hydrophobic core of the NP was achieved with high efficiencies. The loaded NP presented higher cytotoxicity than unloaded NP but preserved their selectivity against cancer cells in a range of tested concentrations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 12 October 2017

    A correction to this article has been published.

References

  1. Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev. 2014;66:26–41.

    Article  Google Scholar 

  2. Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev. 2009;61(14):1250–75.

    Article  Google Scholar 

  3. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.

    Article  Google Scholar 

  4. Neuzil J, Pervaiz S, Fulda S. Mitochondria: the Anti-cancer Target for the Third Millennium. Dordrecht: Springer; 2014.

  5. Fulda S. Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondrion. 2010;10(6):598–603.

    Article  Google Scholar 

  6. Ngo H, Tortorella SM, Ververis K, Karagiannis TC. The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep. 2015;42(4):825–34.

    Article  Google Scholar 

  7. Modica-Napolitano JS, Singh KK. Mitochondrial dysfunction in cancer. Mitochondrion. 2004;4(5):755–62.

    Article  Google Scholar 

  8. Owens KM, Modica-Napolitano J, Singh KK. Mitochondria and cancer. Mitochondria and Cancer. New York: Springer; 2009. p. 1-21.

  9. Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem. 2013;5(1):53–67.

    Article  Google Scholar 

  10. Biasutto L, Dong L-F, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion. 2010;10(6):670–81.

    Article  Google Scholar 

  11. Dong L-F, Neuzil J. Mitochondria in cancer: why mitochondria are a good target for cancer therapy. Prog Mol Biol Translational Sci. 2014;127:211.

    Article  Google Scholar 

  12. Neuzil J, Dong L-F, Rohlena J, Truksa J, Ralph SJ. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion. 2013;13(3):199–208.

    Article  Google Scholar 

  13. Neuzil J, Tomasetti M, Zhao Y, Dong L-F, Birringer M, Wang X-F, et al. Vitamin E analogs, a novel group of “mitocans,” as anticancer agents: the importance of being redox-silent. Mol Pharmacol. 2007;71(5):1185–99.

    Article  Google Scholar 

  14. Dong Y, Guo Y, Gu X. Anticancer mechanisms of vitamin E succinate. Chin J Cancer. 2009;28(10):1114–8.

    Article  Google Scholar 

  15. Rohlena J, Dong LF, Kluckova K, Zobalova R, Goodwin J, Tilly D, et al. Mitochondrially targeted α-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxid Redox Signal. 2011;15(12):2923–35. https://doi.org/10.1089/ars.2011.4192.

    Article  Google Scholar 

  16. Dong L-F, Low P, Dyason JC, Wang X-F, Prochazka L, Witting PK, et al. α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene. 2008;27(31):4324–35.

    Article  Google Scholar 

  17. Dong L-F, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, et al. Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin Cancer Res. 2009;15(5):1593–600.

    Article  Google Scholar 

  18. Neuzil J, Dyason JC, Freeman R, Dong L-F, Prochazka L, Wang X-F, et al. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr. 2007;39(1):65–72.

    Article  Google Scholar 

  19. Dong L-F, Neuzil J. Vitamin E analogues as prototypic mitochondria-targeting anti-cancer agents. mitochondria: the anti-cancer target for the third millennium. Dordrecht: Springer; 2014. p. 151-81.

  20. Neuzil J, Weber T, Gellert N, Weber C. Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer. 2001;84(1):87.

    Article  Google Scholar 

  21. Dong L-F, Swettenham E, Eliasson J, Wang X-F, Gold M, Medunic Y, et al. Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res. 2007;67(24):11906–13.

    Article  Google Scholar 

  22. Duhem N, Danhier F, Préat V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J Controlled Release. 2014;182:33–44.

    Article  Google Scholar 

  23. Koudelka S, Knotigova PT, Masek J, Prochazka L, Lukac R, Miller AD, et al. Liposomal delivery systems for anti-cancer analogues of vitamin E. J Controlled Release. 2015;207:59–69.

    Article  Google Scholar 

  24. Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Fernández-Gutiérrez M, Parra J, Sánchez-Rodríguez C, et al. Anticancer and antiangiogenic activity of surfactant-free nanoparticles based on self-assembled polymeric derivatives of vitamin E: structure-activity relationship. Biomacromolecules. 2015;16(5):1566–81. https://doi.org/10.1021/acs.biomac.5b00130.

    Article  Google Scholar 

  25. Palao‐Suay R, Rodrigáñez L, Aguilar MR, Sánchez‐Rodríguez C, Parra F, Fernández M, et al. Mitochondrially targeted nanoparticles based on α‐TOS for the selective cancer treatment. Macromol Biosci. 2016;16(3):395–411.

    Article  Google Scholar 

  26. Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Maji S, Hoogenboom R, Rohner N, et al. α-TOS-based RAFT block copolymers and their NPs for the treatment of cancer. Polymer Chem. 2016;7(4):838–50.

    Article  Google Scholar 

  27. Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Maji S, Hoogenboom R, Rohner NA, et al. Enhanced bioactivity of α-Tocopheryl succinate based block copolymer nanoparticles by reduced hydrophobicity. Macromol Biosci. 2016;16(12):1824–37.

    Article  Google Scholar 

  28. Dong L-F, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011;286(5):3717–28.

    Article  Google Scholar 

  29. Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol. 2014;9(2):323–33.

    Article  Google Scholar 

  30. Modica-Napolitano JS, Weissig V. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int J Mol Sci. 2015;16(8):17394–421.

    Article  Google Scholar 

  31. Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta (BBA)-Bioenergetics. 2008;1777(7):1028–31.

    Article  Google Scholar 

  32. Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Academy Sci. 2003;100(9):5407–12.

    Article  Google Scholar 

  33. Dong L-F, Jameson VJ, Tilly D, Prochazka L, Rohlena J, Valis K, et al. Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radical Biol Med. 2011;50(11):1546–55.

    Article  Google Scholar 

  34. Han M, Vakili MR, Soleymani Abyaneh H, Molavi O, Lai R, Lavasanifar A. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells. Mol Pharm. 2014;11(8):2640–9.

    Article  Google Scholar 

  35. Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Controlled Release. 2012;159(3):393–402.

    Article  Google Scholar 

  36. Zhou J, Zhao W-Y, Ma X, Ju R-J, Li X-Y, Li N, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 2013;34(14):3626–38.

    Article  Google Scholar 

  37. Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Academy Sci. 2012;109(40):16288–93.

    Article  Google Scholar 

  38. Sharma A, Soliman GM, Al-Hajaj N, Sharma R, Maysinger D, Kakkar A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules. 2011;13(1):239–52.

    Article  Google Scholar 

  39. Wongrakpanich A, Geary SM, Joiner M-lA, Anderson ME, Salem AK. Mitochondria-targeting particles. Nanomedicine. 2014;9(16):2531–43.

    Article  Google Scholar 

  40. Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion. 2012;12(2):190–201.

    Article  Google Scholar 

  41. Wang X-F, Birringer M, Dong L-F, Veprek P, Low P, Swettenham E, et al. A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res. 2007;67(7):3337–44.

    Article  Google Scholar 

  42. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.

    Article  Google Scholar 

  43. Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D. Cancer Incidence and Mortality Worldwide. Int Agency Res Cancer. 2012.

  44. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Controlled Release. 2010;146(3):264–75.

    Article  Google Scholar 

  45. Hurvitz SA, Hu Y, O’Brien N, Finn RS. Current approaches and future directions in the treatment of HER2-positive breast cancer. Cancer Treat Rev. 2013;39(3):219–29.

    Article  Google Scholar 

  46. Nahta R, Yu D, Hung M-C, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–80.

    Article  Google Scholar 

  47. Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater. 2012;24(28):3747–56.

    Article  Google Scholar 

  48. Krag DN, Shukla GS, Shen G-P, Pero S, Ashikaga T, Fuller S, et al. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res. 2006;66(15):7724–33.

    Article  Google Scholar 

  49. Shadidi M, Sioud M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 2003;17(2):256–8.

    Google Scholar 

  50. Orbán E, Manea M, Marquadt A, Bánóczi Z, Csı́k G, Fellinger E, et al. A new daunomycin–peptide conjugate: synthesis, characterization and the effect on the protein expression profile of HL-60 cells in vitro. Bioconjug Chem. 2011;22(10):2154–65.

    Article  Google Scholar 

  51. Palao-Suay R, Martín-Saavedra FM, Rosa Aguilar M, Escudero-Duch C, Martín-Saldaña S, Parra-Ruiz FJ, et al. Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater. 2017. https://doi.org/10.1016/j.actbio.2017.05.028.

    Google Scholar 

  52. Yabu H. Creation of functional and structured polymer particles by self-organized precipitation (SORP). Bull Chem Soc Jpn. 2012;85(3):265–74.

    Article  Google Scholar 

  53. Page B, Page M, Noel C. A new fluorometric assay for cytotoxicity measurements in vitro. Int J Oncol. 1993;3(3):473–6.

    Google Scholar 

  54. Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36(6):892–9.

    Article  Google Scholar 

  55. Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009;5(3):817–31.

    Article  Google Scholar 

  56. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.

    Article  Google Scholar 

  57. Feng S-S, Mei L, Anitha P, Gan CW, Zhou W. Poly (lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials. 2009;30(19):3297–306.

    Article  Google Scholar 

  58. Pan J, Feng S-S. Targeted delivery of paclitaxel using folate-decorated poly (lactide)–vitamin E TPGS nanoparticles. Biomaterials. 2008;29(17):2663–72.

    Article  Google Scholar 

  59. Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D, et al. A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett. 2009;4(12):1530–9.

    Article  Google Scholar 

  60. Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215.

    Article  Google Scholar 

  61. Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res. 2015;17(1):60.

    Article  Google Scholar 

  62. Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Controlled Release. 2014;190:485–99.

    Article  Google Scholar 

  63. McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12(8):517–33.

    Article  Google Scholar 

  64. Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev. 2013;65(1):121–38.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge, David Gómez, and Rosa Ana Ramírez and Mar Fernández for their help in SEM, and cell culture experiments, respectively.

Funding sources

This work was funded by the Spanish Ministry of Economy and Competitiveness (MAT2014-51918-C2-1-R) and CIBER BBN-ECO Foundation project, CSIC (201660I028) and the National Institutes of Health Cell and Tissue Engineering Training Grant T32 GM008433.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Rosa Aguilar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

The original version of this article was revised: The original version of this article unfortunately contained mistakes. The “Reflections on Career Goals” and the group photo were missing in the original version of this article. They are given below. The original article was corrected.

A correction to this article is available online at https://doi.org/10.1007/s10856-017-5995-3.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palao-Suay, R., Aguilar, M.R., Parra-Ruiz, F.J. et al. Multifunctional decoration of alpha-tocopheryl succinate-based NP for cancer treatment: effect of TPP and LTVSPWY peptide. J Mater Sci: Mater Med 28, 152 (2017). https://doi.org/10.1007/s10856-017-5963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5963-y

Navigation