Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev. 2014;66:26–41.
Article
Google Scholar
Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev. 2009;61(14):1250–75.
Article
Google Scholar
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.
Article
Google Scholar
Neuzil J, Pervaiz S, Fulda S. Mitochondria: the Anti-cancer Target for the Third Millennium. Dordrecht: Springer; 2014.
Fulda S. Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondrion. 2010;10(6):598–603.
Article
Google Scholar
Ngo H, Tortorella SM, Ververis K, Karagiannis TC. The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep. 2015;42(4):825–34.
Article
Google Scholar
Modica-Napolitano JS, Singh KK. Mitochondrial dysfunction in cancer. Mitochondrion. 2004;4(5):755–62.
Article
Google Scholar
Owens KM, Modica-Napolitano J, Singh KK. Mitochondria and cancer. Mitochondria and Cancer. New York: Springer; 2009. p. 1-21.
Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem. 2013;5(1):53–67.
Article
Google Scholar
Biasutto L, Dong L-F, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion. 2010;10(6):670–81.
Article
Google Scholar
Dong L-F, Neuzil J. Mitochondria in cancer: why mitochondria are a good target for cancer therapy. Prog Mol Biol Translational Sci. 2014;127:211.
Article
Google Scholar
Neuzil J, Dong L-F, Rohlena J, Truksa J, Ralph SJ. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion. 2013;13(3):199–208.
Article
Google Scholar
Neuzil J, Tomasetti M, Zhao Y, Dong L-F, Birringer M, Wang X-F, et al. Vitamin E analogs, a novel group of “mitocans,” as anticancer agents: the importance of being redox-silent. Mol Pharmacol. 2007;71(5):1185–99.
Article
Google Scholar
Dong Y, Guo Y, Gu X. Anticancer mechanisms of vitamin E succinate. Chin J Cancer. 2009;28(10):1114–8.
Article
Google Scholar
Rohlena J, Dong LF, Kluckova K, Zobalova R, Goodwin J, Tilly D, et al. Mitochondrially targeted α-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxid Redox Signal. 2011;15(12):2923–35. https://doi.org/10.1089/ars.2011.4192.
Article
Google Scholar
Dong L-F, Low P, Dyason JC, Wang X-F, Prochazka L, Witting PK, et al. α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene. 2008;27(31):4324–35.
Article
Google Scholar
Dong L-F, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, et al. Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin Cancer Res. 2009;15(5):1593–600.
Article
Google Scholar
Neuzil J, Dyason JC, Freeman R, Dong L-F, Prochazka L, Wang X-F, et al. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr. 2007;39(1):65–72.
Article
Google Scholar
Dong L-F, Neuzil J. Vitamin E analogues as prototypic mitochondria-targeting anti-cancer agents. mitochondria: the anti-cancer target for the third millennium. Dordrecht: Springer; 2014. p. 151-81.
Neuzil J, Weber T, Gellert N, Weber C. Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer. 2001;84(1):87.
Article
Google Scholar
Dong L-F, Swettenham E, Eliasson J, Wang X-F, Gold M, Medunic Y, et al. Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res. 2007;67(24):11906–13.
Article
Google Scholar
Duhem N, Danhier F, Préat V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J Controlled Release. 2014;182:33–44.
Article
Google Scholar
Koudelka S, Knotigova PT, Masek J, Prochazka L, Lukac R, Miller AD, et al. Liposomal delivery systems for anti-cancer analogues of vitamin E. J Controlled Release. 2015;207:59–69.
Article
Google Scholar
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Fernández-Gutiérrez M, Parra J, Sánchez-Rodríguez C, et al. Anticancer and antiangiogenic activity of surfactant-free nanoparticles based on self-assembled polymeric derivatives of vitamin E: structure-activity relationship. Biomacromolecules. 2015;16(5):1566–81. https://doi.org/10.1021/acs.biomac.5b00130.
Article
Google Scholar
Palao‐Suay R, Rodrigáñez L, Aguilar MR, Sánchez‐Rodríguez C, Parra F, Fernández M, et al. Mitochondrially targeted nanoparticles based on α‐TOS for the selective cancer treatment. Macromol Biosci. 2016;16(3):395–411.
Article
Google Scholar
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Maji S, Hoogenboom R, Rohner N, et al. α-TOS-based RAFT block copolymers and their NPs for the treatment of cancer. Polymer Chem. 2016;7(4):838–50.
Article
Google Scholar
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Maji S, Hoogenboom R, Rohner NA, et al. Enhanced bioactivity of α-Tocopheryl succinate based block copolymer nanoparticles by reduced hydrophobicity. Macromol Biosci. 2016;16(12):1824–37.
Article
Google Scholar
Dong L-F, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011;286(5):3717–28.
Article
Google Scholar
Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol. 2014;9(2):323–33.
Article
Google Scholar
Modica-Napolitano JS, Weissig V. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int J Mol Sci. 2015;16(8):17394–421.
Article
Google Scholar
Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta (BBA)-Bioenergetics. 2008;1777(7):1028–31.
Article
Google Scholar
Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Academy Sci. 2003;100(9):5407–12.
Article
Google Scholar
Dong L-F, Jameson VJ, Tilly D, Prochazka L, Rohlena J, Valis K, et al. Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radical Biol Med. 2011;50(11):1546–55.
Article
Google Scholar
Han M, Vakili MR, Soleymani Abyaneh H, Molavi O, Lai R, Lavasanifar A. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells. Mol Pharm. 2014;11(8):2640–9.
Article
Google Scholar
Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Controlled Release. 2012;159(3):393–402.
Article
Google Scholar
Zhou J, Zhao W-Y, Ma X, Ju R-J, Li X-Y, Li N, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 2013;34(14):3626–38.
Article
Google Scholar
Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Academy Sci. 2012;109(40):16288–93.
Article
Google Scholar
Sharma A, Soliman GM, Al-Hajaj N, Sharma R, Maysinger D, Kakkar A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules. 2011;13(1):239–52.
Article
Google Scholar
Wongrakpanich A, Geary SM, Joiner M-lA, Anderson ME, Salem AK. Mitochondria-targeting particles. Nanomedicine. 2014;9(16):2531–43.
Article
Google Scholar
Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion. 2012;12(2):190–201.
Article
Google Scholar
Wang X-F, Birringer M, Dong L-F, Veprek P, Low P, Swettenham E, et al. A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res. 2007;67(7):3337–44.
Article
Google Scholar
Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.
Article
Google Scholar
Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D. Cancer Incidence and Mortality Worldwide. Int Agency Res Cancer. 2012.
Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Controlled Release. 2010;146(3):264–75.
Article
Google Scholar
Hurvitz SA, Hu Y, O’Brien N, Finn RS. Current approaches and future directions in the treatment of HER2-positive breast cancer. Cancer Treat Rev. 2013;39(3):219–29.
Article
Google Scholar
Nahta R, Yu D, Hung M-C, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–80.
Article
Google Scholar
Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater. 2012;24(28):3747–56.
Article
Google Scholar
Krag DN, Shukla GS, Shen G-P, Pero S, Ashikaga T, Fuller S, et al. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res. 2006;66(15):7724–33.
Article
Google Scholar
Shadidi M, Sioud M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 2003;17(2):256–8.
Google Scholar
Orbán E, Manea M, Marquadt A, Bánóczi Z, Csı́k G, Fellinger E, et al. A new daunomycin–peptide conjugate: synthesis, characterization and the effect on the protein expression profile of HL-60 cells in vitro. Bioconjug Chem. 2011;22(10):2154–65.
Article
Google Scholar
Palao-Suay R, Martín-Saavedra FM, Rosa Aguilar M, Escudero-Duch C, Martín-Saldaña S, Parra-Ruiz FJ, et al. Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater. 2017. https://doi.org/10.1016/j.actbio.2017.05.028.
Google Scholar
Yabu H. Creation of functional and structured polymer particles by self-organized precipitation (SORP). Bull Chem Soc Jpn. 2012;85(3):265–74.
Article
Google Scholar
Page B, Page M, Noel C. A new fluorometric assay for cytotoxicity measurements in vitro. Int J Oncol. 1993;3(3):473–6.
Google Scholar
Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36(6):892–9.
Article
Google Scholar
Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009;5(3):817–31.
Article
Google Scholar
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.
Article
Google Scholar
Feng S-S, Mei L, Anitha P, Gan CW, Zhou W. Poly (lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials. 2009;30(19):3297–306.
Article
Google Scholar
Pan J, Feng S-S. Targeted delivery of paclitaxel using folate-decorated poly (lactide)–vitamin E TPGS nanoparticles. Biomaterials. 2008;29(17):2663–72.
Article
Google Scholar
Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D, et al. A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett. 2009;4(12):1530–9.
Article
Google Scholar
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215.
Article
Google Scholar
Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res. 2015;17(1):60.
Article
Google Scholar
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Controlled Release. 2014;190:485–99.
Article
Google Scholar
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12(8):517–33.
Article
Google Scholar
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev. 2013;65(1):121–38.
Article
Google Scholar