Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels


Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p < 0.05). Immunofluorescence against a human mitochondrial antibody three months post-implantation showed that the hMSCs were integrated into the de novo formed tissue, thus suggesting their ability to overcome the interspecies barrier. Hence, we conclude that the use of xenogeneic MSCs embedded in an ELR-based hydrogel leads to the successful regeneration of hyaline cartilage in osteochondral lesions.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Kuettner KE, Cole AA. Cartilage degeneration in different human joints. Osteoarthr Cartil. 2005;13(2):93–103.

    Article  Google Scholar 

  2. 2.

    Hiligsmann M, Reginster J-Y. The economic weight of osteoarthritis in Europe. Medicographia. 2013;35(1):197–202.

    Google Scholar 

  3. 3.

    Chevalier X. Physiopathology of arthrosis. The normal cartilage. Presse Med. 1998;27(2):75–80.

    Google Scholar 

  4. 4.

    Vaquero J, Forriol F. Knee chondral injuries: clinical treatment strategies and experimental models. Injury. 2011;43:694–705.

    Article  Google Scholar 

  5. 5.

    Chen F, Rousche K, Tuan R. Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol. 2006;2(7):373–82.

    Article  Google Scholar 

  6. 6.

    Li J, Ezzelarab MB, Cooper DKC. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation. 2012;19(5):273–85.

    Article  Google Scholar 

  7. 7.

    Roche ET, Hastings CL, Lewin SA, Shvartsman D, Brudno Y, Vasilyev NV, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials. 2014;35(25):6850–8.

    Article  Google Scholar 

  8. 8.

    Martens TP, Godier AFG, Parks JJ, Wan LQ, Koeckert MS, Eng GM, et al. Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant. 2009;18(3):297–304.

    Article  Google Scholar 

  9. 9.

    Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant technology in the development of materials and systems for soft-tissue repair. Adv Healthc Mater. 2015;4(16):2423–55.

    Article  Google Scholar 

  10. 10.

    Rodriguez-Cabello JC, Martin L, Girotti A, Garcia-Arevalo C, Arias FJ, Alonso M. Emerging applications of multifunctional elastin-like recombinamers. Nanomedicine. 2011;6(1):111–22.

    Article  Google Scholar 

  11. 11.

    Urry DW. Molecular machines - how motion and other functions of living organisms can result from reversible chemical-changes. Angew Chem-Int Ed Engl. 1993;32(6):819–41.

    Article  Google Scholar 

  12. 12.

    Martin L, Arias FJ, Alonso M, Garcia-Arevalo C, Rodriguez-Cabello JC. Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer. Soft Matter. 2010;6(6):1121–4.

    Article  Google Scholar 

  13. 13.

    Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986;44(4):517–8.

    Article  Google Scholar 

  14. 14.

    Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol. 2007;17(1):103–18.

    Article  Google Scholar 

  15. 15.

    Barber FA, Dockery WD. A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy. 2011;27(1):60–4.

    Article  Google Scholar 

  16. 16.

    Orth P, Zurakowski D, Wincheringer D, Madry H. Reliability, reproducibility, and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model. Tissue Eng Part C Methods. 2011;18(5):329–39.

    Article  Google Scholar 

  17. 17.

    Pérez-Simon JA, López-Villar O, Andreu EJ, Rifón J, Muntion S, Campelo MD, et al. Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase I/II clinical trial. Haematologica. 2011;96(7):1072–6.

    Article  Google Scholar 

  18. 18.

    Villaron E, Almeida J, Lopez-Holgado N, Alcoceba M, Sanchez-Abarca L, Sanchez-Guijo F, et al. Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica. 2004;89(12):1421–7.

    Google Scholar 

  19. 19.

    Rodriguez-Cabello JC, Girotti A, Ribeiro A, Arias FJ. Synthesis of genetically engineered protein polymers (recombinamers) as an example of advanced self-assembled smart materials. Methods Mol Biol. 2012;811:17–38.

    Article  Google Scholar 

  20. 20.

    Nakamura T, Sekiya I, Muneta T, Hatsushika D, Horie M, Tsuji K, et al. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy. 2012;14(3):327–38.

    Article  Google Scholar 

  21. 21.

    Hrabchak C, Rouleau J, Moss I, Woodhouse K, Akens M, Bellingham C, et al. Assessment of biocompatibility and initial evaluation of genipin cross-linked elastin-like polypeptides in the treatment of an osteochondral knee defect in rabbits. Acta Biomater. 2010;6(6):2108–15.

    Article  Google Scholar 

  22. 22.

    Nettles DL, Kitaoka K, Hanson NA, Flahiff CM, Mata BA, Hsu EW, et al. In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A. 2008;14(7):1133–40.

    Article  Google Scholar 

  23. 23.

    Schütz K, Despang F, Lode A, Gelinsky M. Cell-laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue. J Tissue Eng Regen Med. 2016;10(5):404–17.

    Article  Google Scholar 

  24. 24.

    Marquass B, Somerson JS, Hepp P, Aigner T, Schwan S, Bader A, et al. A novel MSC-seeded triphasic construct for the repair of osteochondral defects. J Orthop Res. 2010;28(12):1586–99.

    Article  Google Scholar 

  25. 25.

    Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia. 2017. doi:10.1016/j.actbio.2017.01.036.

  26. 26.

    Kim M, Foo LF, Uggen C, Lyman S, Ryaby JT, Moynihan DP, et al. Evaluation of early osteochondral defect repair in a rabbit model utilizing fourier transform-infrared imaging spectroscopy, magnetic resonance imaging, and quantitative T2 mapping. Tissue Eng Part C Methods. 2010;16(3):355–64.

    Article  Google Scholar 

  27. 27.

    Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR, et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1(4):253–61.

    Article  Google Scholar 

  28. 28.

    Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, Mochizuki T, et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007;25(3):689–96.

    Article  Google Scholar 

  29. 29.

    Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, et al. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep. 2014;4:4457.

    Article  Google Scholar 

  30. 30.

    Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, et al. Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil. 2010;18(12):1608–19.

    Article  Google Scholar 

  31. 31.

    D’Este M, Sprecher CM, Milz S, Nehrbass D, Dresing I, Zeiter S, et al. Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. J Biomed Mater Res A. 2016;104(6):1469–78.

    Article  Google Scholar 

  32. 32.

    Levingstone TJ, Thompson E, Matsiko A, Schepens A, Gleeson JP, O’Brien FJ. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater. 2016;32:149–60.

    Article  Google Scholar 

  33. 33.

    Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Rieppo L, Töyräs J, et al. Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthr Cartil. 2013;21(3):481–90.

    Article  Google Scholar 

  34. 34.

    Liu S, Jia Y, Yuan M, Guo W, Huang J, Zhao B, et al. Repair of osteochondral defects using human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in a rabbit model. BioMed Res Int. 2017;2017:12.

    Google Scholar 

  35. 35.

    Jang K-M, Lee J-H, Park CM, Song H-R, Wang JH. Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1434–44.

    Article  Google Scholar 

Download references


The authors are grateful for funding from the European Commission (NMP-2014-646075, HEALTH-F4-2011-278557, PITN-GA-2012-317306 and MSCA-ITN-2014-642687), the MINECO of the Spanish Government (MAT2016-78903-R, MAT2016-79435-R, MAT2013-42473-R, MAT2013-41723-R and MAT2012-38043), the Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, and Junta de Castilla y León (VA244U13, VA313U14 and GRS/516/A/10), Spain. Sandra Muntión is supported by grant RD12/0019/0017 from the Instituto de Salud Carlos III, Spain.

Author information



Corresponding author

Correspondence to José Carlos Rodríguez-Cabello.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pescador, D., Ibáñez-Fonseca, A., Sánchez-Guijo, F. et al. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels. J Mater Sci: Mater Med 28, 115 (2017).

Download citation