Skip to main content
Log in

High-scale yield of nano hydroxyapatite through combination of mechanical activation and chemical dispersion

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study is to develop a simple, convenient and effective approach to synthesize nano-sized hydroxyapatite (nano-HA) at high-scale yield. Nano-HA was wet synthesized in the presence or absence of alendronate sodium (ALN), one of bisphosphonates for anti-osteoporotic. Then aged and washed nano-HA precipitate was directly treated by mechanical activation combined with the chemical dispersion of ALN to prevent the agglomeration of nano-HA. ALN acted not only as a chemical dispersant but also as an orthopedic drug. In vitro release showed that ALN was released slowly from nano-HA. Transmission electron microscopy (TEM) revealed that nano-HA with size less than 100 nm appeared as single particle after being treated by mechanical activation combined with the dispersion of ALN (AMA-HA and MA-HA). High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) confirmed that as-prepared nanoparticles were HA with low crystallinity and crystallite size. Fourier transform infrared spectroscopy (FTIR) indicated that the phosphonate groups in ALN were introduced to bond with the Ca2+ of HA to impede the growth of HA crystal. Zeta potential illustrated that the absolute value of surface negative charge of nano-HA increased significantly with the addition of ALN, which inhibited the agglomeration of nano-HA. The present approach makes it feasible to produce nano-HA at high-scale yield, which provide the possibility to construct bone graft.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3:961–9.

    Article  Google Scholar 

  2. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.

    Google Scholar 

  3. Krisanapiboon A, Buranapanitkit B, Oungbho K. Biocompatability of hydroxyapatite composite as a local drug delivery system. J Orthop Surg Res. 2006;14:315

    Article  Google Scholar 

  4. Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh B. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. J Mater Chem. 2003;13:3053–7.

    Article  Google Scholar 

  5. Boonsongrit Y, Abe H, Sato K, Naito M, Yoshimura M, Ichikawa H, Fukumori Y. Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system. Mater Sci Eng: B. 2008;148:162–5.

    Article  Google Scholar 

  6. Zhu SH, Huang BY, Zhou KC, Huang SP, Liu F, Li YM, Long ZG. Hydroxyapatite nanoparticles as a novel gene carrier. J Nanopart Res. 2004;6:307–11.

    Article  Google Scholar 

  7. Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–81.

    Article  Google Scholar 

  8. Garai S, Sinha A. Three dimensional biphasic calcium phosphate nanocomposites for load bearing bioactive bone grafts. Mater Sci Eng: C. 2016;59:375–83.

    Article  Google Scholar 

  9. Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A. Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials. 2008;29:790–6.

    Article  Google Scholar 

  10. Kumar AR, Kalainathan S. Sol–gel synthesis of nanostructured hydroxyapatite powder in presence of polyethylene glycol. Phys B Cond Matter. 2010;405:2799–802.

    Article  Google Scholar 

  11. Catros S, Guillemot F, Lebraud E, Chanseau C, Perez S, Bareille R, Fricain JC. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. Irbm. 2010;31:226–33.

    Article  Google Scholar 

  12. Park HC, Baek DJ, Park YM, Yoon SY, Stevens R. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J Mater Sci. 2004;39:2531–4.

    Article  Google Scholar 

  13. Zhang G, Chen J, Yang S, Yu Q, Wang Z, Zhang Q. Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Mater Lett. 2011;65:572–4.

    Article  Google Scholar 

  14. Wei K, Wang Y, Lai C, Ning C, Wu D, Wu G, Ye J. Synthesis and characterization of hydroxyapatite nanobelts and nanoparticles. Mater Lett. 2005;59:220–5.

    Article  Google Scholar 

  15. Silva CC, Graça MPF, Valente MA, Sombra ASB. Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling. J Mater Sci. 2007;42:3851–5.

    Article  Google Scholar 

  16. Fang W, Zhang H, Yin J, Yang B, Zhang Y, Li J, Yao F. Hydroxyapatite Crystal Formation in the Presence of Polysaccharide. Cryst Growth Des. 2016;16:1247–55.

    Article  Google Scholar 

  17. Kakiage M, Iwase K, Kobayashi H. Effect of citric acid addition on disaggregation of crystalline hydroxyapatite nanoparticles under calcium-rich conditions. Mater Lett. 2015;156:39–41.

    Article  Google Scholar 

  18. Deng ZY, Zhou Y, Inagaki Y, Ando M, Ohji T. Role of Zr(OH)4 hard agglomerates in fabricating porous ZrO2 ceramics and the reinforcing mechanism. Acta Mater. 2003;51:731–9.

    Article  Google Scholar 

  19. Li H, Fu Y, Niu R, Zhou Z, Nie J, Yang D. Study on the biocomposites with poly (ethylene glycol) dimethacrylate and surfaced-grafted hydroxyapatite nanoparticles. J Appl Polym Sci. 2013;127:1737–43.

    Article  Google Scholar 

  20. Zhang Y, Dong Y. Effect of surfactant on morphology of hydroxyapatite. Synth React Inorg M. 2015;45:411–4.

    Article  Google Scholar 

  21. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46:666–72.

    Article  Google Scholar 

  22. Francis MD, Graham R, Russell G, Fleisch H. Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science. 1969;165:1264–6.

    Article  Google Scholar 

  23. Li DD, Zhu YT, Liang ZQ. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery. Mater Res Bull. 2013;48:2201–4.

    Article  Google Scholar 

  24. Beyer MK, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev. 2005;105:2921–48.

    Article  Google Scholar 

  25. Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20:1221–7.

    Article  Google Scholar 

  26. Silva CC, Pinheiro AG, Miranda MAR, Góes JC, Sombra ASB. Structural properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sci. 2003;5:553–8.

    Article  Google Scholar 

  27. Yeong KCB, Wang J, Ng SC. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials. 2001;22:2705–12.

    Article  Google Scholar 

  28. Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R. Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials. Ceram Int. 2013;39:5751–63.

    Article  Google Scholar 

  29. Lopez-Heredia MA, Bohner M, Zhou W, Winnubst AJA, Wolke JGC, Jansen JA. The effect of ball milling grinding pathways on the bulk and reactivity properties of calcium phosphate cements. J Biomed Mater Res B. 2011;98:68–79.

    Article  Google Scholar 

  30. Huang P, Li P, Zhao JS, Qu SX, Feng B, Weng J. Mechanical activation reinforced porous calcium phosphate cement. J Inorg Mater. 2015;30:432–8.

    Article  Google Scholar 

  31. Mulak W, Balaž P, Chojnacka M. Chemical and morphological changes of millerite by mechanical activation. Int J Miner Process. 2002;66:233–40.

    Article  Google Scholar 

  32. Mohandes F, Salavati-Niasari M. Simple morphology-controlled fabrication of hydroxyapatite nanostructures with the aid of new organic modifiers. Chem Eng J. 2014;252:173–84.

    Article  Google Scholar 

  33. Taha EA, Youssef NF. Spectrophotometric determination of some drugs for osteoporosis. Chem Pharm Bull. 2003;51:1444–7.

    Article  Google Scholar 

  34. Wang YJ, Chen JD, Wei K, Zhang SH, Wang XD. Surfactant-assisted synthesis of hydroxyapatite particles. Mater Lett. 2006;60:3227–31.

    Article  Google Scholar 

  35. Habraken WJEM, Tao JH, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, Verch A, Dmitrovic V, Bomans PHH, Frederik PM, Laven J, Schoot P, Aichmayer B, With G, DeYoreo JJ, Sommerdijk NAJM. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun. 2013;4:1507

    Article  Google Scholar 

  36. Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–34.

    Article  Google Scholar 

  37. Basim GB, Moudgil BM. Effect of soft agglomerates on CMP slurry performance. J Colloid Interf Sci. 2002;256:137–42.

    Article  Google Scholar 

  38. Hannora AE, Ataya S. Structure and compression strength of hydroxyapatite/titania nanocomposites formed by high energy ball milling. J Alloy Compd. 2016;658:222–33.

    Article  Google Scholar 

  39. Iyyappan E, Wilson P, Sheela K, Ramya R. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Mat Sci Eng: C. 2016;63:554–62.

    Article  Google Scholar 

  40. Schnitzler V, Fayon F, Despas C, Khairoun I, Mellier C, Rouillon T, Massiot D, Walcarius A, Janvier P, Gauthier O, Montavon G, Bouler JM, Bujoli B. Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: critical influence of the drug introduction mode on the in vitro cement properties. Acta Biomater. 2011;7:759–70.

    Article  Google Scholar 

  41. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RGG, Ebetino FH. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone. 2006;38:617–27.

    Article  Google Scholar 

  42. Robinson J, Cukrowski I, Marques HM. Modelling the interaction of several bisphosphonates with hydroxyapatite using the generalised AMBER force field. J Mol Struc. 2006;825:134–42.

    Article  Google Scholar 

  43. Pascaud P, Errassifi F, Brouillet F, Sarda S, Barroug A, Legrouri A, Rey C. Adsorption on apatitic calcium phosphates for drug delivery: interaction with bisphosphonate molecules. J Mater Sci: Mater Med. 2014;25:2373–81.

    Google Scholar 

Download references

Acknowledgements

The present study was supported by the National Basic Research Program of China (973 Program, 2012CB933602), the National Natural Science Foundation of China (51372210, 50975239), the Research Fund for the Doctoral Program of Higher Education of China (20130184110023), the Basic Research Foundation Key Project of Sichuan Province (2016JY0011), and the Fundamental Research Funds for the Central Universities (2682016YXZT11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxin Qu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Dai, C., Liu, W. et al. High-scale yield of nano hydroxyapatite through combination of mechanical activation and chemical dispersion. J Mater Sci: Mater Med 28, 83 (2017). https://doi.org/10.1007/s10856-017-5892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5892-9

Keywords

Navigation