Skip to main content

Advertisement

Log in

In vivo osseointegration of dental implants with an antimicrobial peptide coating

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the in vivo osseointegration of implants with hydrophobic antimicrobial GL13K-peptide coating in rabbit femoral condyles by micro-CT and histological analysis. Six male Japanese Rabbits (4 months old and weighing 2.5 kg each) were included in this study. Twelve implants (3.75 mm wide, 7 mm long) were randomly distributed in two groups, with six implants in the experimental group coated with GL13K peptide and six implants in the control group without surface coating. Each implant in the test and the control group was randomly implanted in the left or right side of femoral condyles. On one side randomly-selected of the femur, each rabbit received a drill that was left without implant as control for the natural healing of bone. After 3 weeks of healing radiographic evaluation of the implant sites was taken. After 6 weeks of healing, rabbits were sacrificed for evaluation of the short-term osseointegration of the dental implants using digital radiography, micro-CT and histology analysis. To perform evaluation of osseointegration, implant location and group was double blinded for surgeon and histology/radiology researcher. Two rabbits died of wound infection in sites with non-coated implants 2 weeks after surgery. Thus, at least four rabbits per group survived after 6 weeks of healing. The wounds healed without suppuration and inflammation. No implant was loose after 6 weeks of healing. Radiography observations showed good osseointegration after 3 and 6 weeks postoperatively, which proved that the tissues followed a natural healing process. Micro-CT reconstruction and analysis showed that there was no statistically significant difference (P > 0.05) in volume of bone around the implant between implants coated with GL13K peptide and implants without coating. Histomorphometric analysis also showed that the mineralized bone area was no statistically different (P > 0.05) between implants coated with GL13K peptide and implants without coating. This study demonstrates that titanium dental implants with an antimicrobial GL13K coating enables in vivo implant osseointegration at similar bone growth rates than gold-standard non-coated dental implants up to 6 weeks of implantation in rabbit femurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dabdoub SM, Tsigarida AA, Kumar PS. Patient-specific analysis of periodontal and peri-implant microbiomes. J Dent Res. 2013;92(S12):168s–75s. doi:10.1177/0022034513504950.

    Article  Google Scholar 

  2. Group MR. Annual industry report. Implant Dent. 2000;9:192–4.

    Article  Google Scholar 

  3. Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants—clinical results and marginal bone loss. Clin Oral Implant Res. 1996;7(4):329–36. doi:10.1034/j.1600-0501.1996.070405.x.

    Article  Google Scholar 

  4. Schwartz-Arad D, Kidron N, Dolev E. A long-term study of implants supporting overdentures as a model for implant success. J Periodontol. 2005;76(9):1431–5. doi:10.1902/jop.2005.76.9.1431.

    Article  Google Scholar 

  5. Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res. 1996;7(4):329–36.

    Article  Google Scholar 

  6. Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol. 2008;35:286–91. doi:10.1111/j.1600-051X.2008.01274.x.

    Article  Google Scholar 

  7. Wu Y, Zitelli JP, TenHuisen KS, Yu XJ, Libera MR. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials. 2011;32(4):951–60. doi:10.1016/j.biomaterials.2010.10.001.

    Article  Google Scholar 

  8. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Max Impl. 2004;19(1):100–6.

    Google Scholar 

  9. Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implant Res. 1997;8(1):1–9. doi:10.1111/j.1600-0501.1997.tb00001.x.

    Article  Google Scholar 

  10. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132.

    Google Scholar 

  11. Arciniegas M, Aparicio C, Manero JM, Gil FJ. Low elastic modulus metals for joint prosthesis: Tantalum and nickel-titanium foams. J Eur Ceram Soc. 2007;27(11):3391–8. doi:10.1016/j.jeurceramsoc.2007.02.184.

    Article  Google Scholar 

  12. Bumgardner JD, Adatrow P, Haggard WO, Norowski PA. Emerging antibacterial biomaterial strategies for the prevention of peri-implant inflammatory diseases. Int J Oral Maxillofac Implants. 2011;26(3):553–60.

    Google Scholar 

  13. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54. doi:10.1016/j.dental.2006.06.025.

    Article  Google Scholar 

  14. Schliephake H, Scharnweber D. Chemical and biological functionalization of titanium for dental implants. J Mater Chem. 2008;18(21):2404–14. doi:10.1039/015355b.

    Article  Google Scholar 

  15. Chen X, Li YP, Aparicio C: Biofunctional coatings for dental implants. In: Nazarpour S, Chaker M, editors. Thin films and coatings in biology. Biological and medical physics, biomedical engineering series. New York: Springer; 2013. p. 105–43.

  16. Jahoda D, Nyc O, Pokorny D, Landor I, Sosna A. Antibiotic treatment for prevention of infectious complications in joint replacement. Acta Chir Orthop Traumatol Cech. 2006;73(2):108–14.

    Google Scholar 

  17. Kim WH, Lee SB, Oh KT, Moon SK, Kim KM, Kim KN. The release behavior of CHX from polymer-coated titanium surfaces. Surf Interface Anal. 2008;40(3-4):202–4. doi:10.1002/Sia.2809.

    Article  Google Scholar 

  18. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27(32):5512–7. doi:10.1016/j.biomaterials.2006.07.003.

    Article  Google Scholar 

  19. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–48. doi:10.1016/j.biomaterials.2003.11.033.

    Article  Google Scholar 

  20. Chua PH, Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29(10):1412–21. doi:10.1016/j.biomaterials.2007.12.019.

    Article  Google Scholar 

  21. Neu HC. The crisis in antibiotic-resistance. Science. 1992;257(5073):1064–73. doi:10.1126/science.257.5073.1064.

    Article  Google Scholar 

  22. Abdolhosseini M, Nandula SR, Song J, Hirt H, Gorr SU. Lysine substitutions convert a bacterial-agglutinating peptide into a bactericidal peptide that retains anti-lipopolysaccharide activity and low hemolytic activity. Peptides. 2012;35(2):231–8. doi:10.1016/j.peptides.2012.03.017.

    Article  Google Scholar 

  23. Hirt H, Gorr SU. Antimicrobial peptide GL13K is effective in reducing biofilms of pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(10):4903–10. doi:10.1128/Aac.00311-13.

    Article  Google Scholar 

  24. Holmberg KV, Abdolhosseini M, Li Y, Chen X, Gorr SU, Aparicio C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013. 10.1016/j.actbio.2013.06.017.

  25. Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of porphyromonas gingivalis. Microbiol Mol Biol Rev. 1998;62(4):1244–63.

    Google Scholar 

  26. Chen X, Hirt H, Li YP, Gorr SU, Aparicio C. Antimicrobial GL13K peptide coatings killed and ruptured the wall of streptococcus gordonii and prevented formation and growth of biofilms. PLos One. 2014. doi:ARTN e11157910.1371/journal.pone.0111579.

  27. Cook GS, Costerton JW, Lamont RJ. Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii. J Periodontal Res. 1998;33(6):323–7. doi:10.1111/j.1600-0765.1998.tb02206.x.

    Article  Google Scholar 

  28. Chen X, Sevilla P, Aparicio C. Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloid Surf B. 2013;107:189–97. doi:10.1016/j.colsurfb.2013.02.005.

    Article  Google Scholar 

  29. Chen X. Multi-bioactive peptide coatings for dental implants. University of Minnesota Digital Conservancy; 2014. http://hdl.handle.net/11299/173938. Accessed 28 Dec 2016.

  30. Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol. 2011;38:126–41. doi:10.1111/j.1600-051X.2010.01664.x.

    Article  Google Scholar 

  31. Krisanaprakornkit S, Khongkhunthian S. The Role of Antimicrobial Peptides in Periodontal Disease. In: Walchuck R, editor. Periodontitis: Symptoms, Treatment and Prevention. Public Health in the 21st Century; 2010, p. 73–103.

  32. Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7. doi:10.1038/Nbt1267.

    Article  Google Scholar 

  33. Svensson S, Suska F, Emanuelsson L, Palmquist A, Norlindh B, Trobos M, et al. Osseointegration of titanium with an antimicrobial nanostructured noble metal coating. Nanomedicine. 2013;9(7):1048–56. doi:10.1016/j.nano.2013.04.009.

    Article  Google Scholar 

  34. Moojen DJF, Vogely HC, Fleer A, Nikkels PGJ, Higham PA, Verbout AJ, et al. Prophylaxis of infection and effects on osseointegration using a tobramycin-periapatite coating on titanium implants—an experimental study in the rabbit. J Orthop Res. 2009;27(6):710–6. doi:10.1002/jor.20808.

    Article  Google Scholar 

  35. Wang LX, He S, Wu XM, Liang SS, Mu ZL, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014;35(25):6758–75. doi:10.1016/j.biomaterials.2014.04.085.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Wu.

Ethics declarations

Conflict of Interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhou, X., Liu, S. et al. In vivo osseointegration of dental implants with an antimicrobial peptide coating. J Mater Sci: Mater Med 28, 76 (2017). https://doi.org/10.1007/s10856-017-5885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5885-8

Navigation