Skip to main content
Log in

Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were prepared by electrospinning of highly concentrated chitosan- polyvinylpyrrolidone solutions containing graphene oxide (GO) nanosheets. No surfactants and organic solvents were utilized to ensure high biocompatibility of the fibrous structure. In vitro evaluations by human skin fibroblast cells including live and dead assay and MTT results show that GO promote cell viability of porous nanofibrous membrane while providing enhanced bactericidal capacity. In vivo studies on rat’s skin determine accelerated healing effect, i.e. a large open wound (1.5 × 1.5 cm2) is fully regenerated after 14-day of post operation while healing is observed for sterile gauze sponge (as the control). Pathological studies support thick dermis formation and complete epithelialization in the presence of 1.5 wt% GO nanosheets. Over 99% wound healing occurs after 21 days for the injury covered with TSG containing 1.5 wt% GO while this would takes weeks for the control. Therefore, the developed materials have a high potential to be used as TSG as pre-clinical testing has shown.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Venugopal J, Ramakrishna S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol. 2005;125(3):147–57.

    Article  Google Scholar 

  2. Vasconcelos A, Cavaco-Paulo A. Wound dressings for a proteolytic-rich environment. Appl Microbiol Biotechnol. 2011;90(2):445–60. doi:10.1007/s00253-011-3135-4

    Article  Google Scholar 

  3. Tamayol A, Akbari M, Zilberman Y, Comotto M, Lesha E, Serex L, et al. Flexible pH‐sensing hydrogel fibers for epidermal applications. Adv Healthcare Mater. 2016;5(6):711–9.

    Article  Google Scholar 

  4. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127–36.

    Article  Google Scholar 

  5. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv. 2013;31(5):669–87.

    Article  Google Scholar 

  6. Mahmoudi N, Ostadhossein F, Simchi A. Physicochemical and antibacterial properties of chitosan‐polyvinylpyrrolidone films containing self‐organized graphene oxide nanolayers. J Appl Polym Sci 2016;133(11):43194.

  7. Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26(1):1–21.

    Article  Google Scholar 

  8. Jafari J, Emami SH, Samadikuchaksaraei A, Bahar MA, Gorjipour F. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Biomed Mater Eng. 2011;21(2):99–112. doi:10.3233/bme-2011-0660

    Google Scholar 

  9. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF. Chitosan membrane as a wound‐healing dressing: characterization and clinical application. J Biomed Mater Res Part B Appl Biomater. 2004;69(2):216–22.

    Article  Google Scholar 

  10. Jayakumar R, Prabaharan M, Nair S, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28(1):142–50.

    Article  Google Scholar 

  11. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.

    Article  Google Scholar 

  12. Yao J, Sun Y, Yang M, Duan Y. Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem. 2012;22(29):14313–29.

    Article  Google Scholar 

  13. Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46(10):2211–24.

    Article  Google Scholar 

  14. Terzopoulou Z, Kyzas GZ, Bikiaris DN. Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Mater. 2015;8(2):652–83.

    Article  Google Scholar 

  15. Ionita M, Crica L, Tiainen H, Haugen H, Vasile E, Dinescu S, et al. Gelatin–poly (vinyl alcohol) porous biocomposites reinforced with graphene oxide as biomaterials. J Mater Chem B. 2016;4(2):282–91.

    Article  Google Scholar 

  16. Murray E, Sayyar S, Thompson BC, Gorkin R III, Officer DL, Wallace GG. A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Adv. 2015;5(56):45284–90.

    Article  Google Scholar 

  17. Ye Y-S, Zeng H-X, Wu J, Dong L-Y, Zhu J-T, Xue Z-Get al. Biocompatible reduced graphene oxide sheets withsuperior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chemistry. 2016;18:1674–83.

  18. Wang C, Li Y, Ding G, Xie X, Jiang M. Preparation and characterization of graphene oxide/poly(vinyl alcohol) composite nanofibers via electrospinning. J Appl Polym Sci. 2013;127(4):3026–32. doi:10.1002/app.37656.

    Article  Google Scholar 

  19. Jin L, Wu D, Kuddannaya S, Zhang Y, Wang Z. Fabrication, characterization, and biocompatibility of polymer cored reduced graphene oxide nanofibers. ACS Appl Mater Interfaces. 2016;8(8):5170–7.

    Article  Google Scholar 

  20. Liu Y, Park M, Shin HK, Pant B, Choi J, Park YW, et al. Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J Ind Eng Chem. 2014;20(6):4415–20. doi:10.1016/j.jiec.2014.02.009.

    Article  Google Scholar 

  21. Lu B, Li T, Zhao H, Li X, Gao C, Zhang S, et al. Graphene-based composite materials beneficial to wound healing. Nanoscale. 2012;4(9):2978–82. doi:10.1039/c2nr11958g.

    Article  Google Scholar 

  22. Azarniya A, Eslahi N, Mahmoudi N, Simchi A. Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Compos Part A. 2016;85:113–22.

    Article  Google Scholar 

  23. de Faria AF, Perreault F, Shaulsky E, Arias Chavez LH, Elimelech M. Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl Mater Interfaces. 2015;7(23):12751–9.

    Article  Google Scholar 

  24. Mazaheri M, Akhavan O, Simchi A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl Surf Sci. 2014;301(0):456–62. doi:10.1016/j.apsusc.2014.02.099.

    Article  Google Scholar 

  25. Mahmoudi N, Simchi A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: in vitro and in vivo effects of graphene oxide. Mater Sci Eng. 2017;70:121–31.

    Article  Google Scholar 

  26. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339

    Article  Google Scholar 

  27. Mi FL, Sung HW, Shyu SS. Synthesis and characterization of a novel chitosan‐based network prepared using naturally occurring crosslinker. J Polym Sci Part A. 2000;38(15):2804–14.

    Article  Google Scholar 

  28. Vega-Avila E, Pugsley MK, editors. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc. 2011.

  29. Care IoLARCo, Animals UoL, resources NIoHDoR. Guide forthe care and use of laboratory animals. National Academies.1985;1:89–544.

  30. Gilchrist MD, Ní Annaidh A, Destrade M. Characterising the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater. 2012;5(1):139–48.

  31. Erencia M, Cano F, Tornero JA, Fernandes MM, Tzanov T, Macanás J, et al. Electrospinning of gelatin fibers using solutions with low acetic acid concentration: effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. J Appl Polym Sci 2015;132(25):42115.

  32. Talukdar Y, Rashkow JT, Lalwani G, Kanakia S, Sitharaman B. The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials. 2014;35(18):4863–77. doi:10.1016/j.biomaterials.2014.02.054

    Article  Google Scholar 

  33. Kim J, Kim Y-R, Kim Y, Lim KT, Seonwoo H, Park S, et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. J Mater Chem B. 2013;1(7):933–8. doi:10.1039/C2TB00274D

    Article  Google Scholar 

  34. Poursamar SA, Lehner AN, Azami M, Ebrahimi-Barough S, Samadikuchaksaraei A, Antunes AP. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C Mater Biol Appl. 2016;63:1–9. doi:10.1016/j.msec.2016.02.034

    Article  Google Scholar 

  35. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care. 2011;15(3):R154

    Article  Google Scholar 

  36. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, et al. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater. 2015;6(1):104–42.

    Article  Google Scholar 

  37. Okamoto Y, Miyatake K, Morimoto M, Saimoto H, Shigemasa Y, Minami S. Mechanism of wound healing acceleration by chitin and chitosan. Res Adv Macromol. 2002;3:1–22.

    Google Scholar 

  38. Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, et al. A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J. 2006;42(9):2013–22.

    Article  Google Scholar 

  39. Ruiz ON, Fernando KS, Wang B, Brown NA, Luo PG, McNamara ND, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5(10):8100–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Fatemeh Mohandes, and Mr. Eng. Amin Jalali (Sharif university of Technology) for experimental and technical support. AS thanks funding support from Sharif University of Technology (No. G930305), Iran National Science Foundation (INSF No. 95-S-48740), and Iran Elite Foundation (No. ENL 5418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simchi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, N., Eslahi, N., Mehdipour, A. et al. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci: Mater Med 28, 73 (2017). https://doi.org/10.1007/s10856-017-5874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5874-y

Navigation