Skip to main content
Log in

Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Costerton JW, Stewart PS, Greenberg EP. Science. 1999;284:1318

    Article  Google Scholar 

  2. Rebecca JHC, Brady A, Leid Jeff G, Shirtliff Mark E. Infections of orthopaedic implants and devices. Los Angeles, CA: Springer; 2008.

    Google Scholar 

  3. Havelin LI, Fenstad AM, Salomonsson R, et al. Acta Orthop. 2009; 80: 393. doi:912305856 [pii] 10.3109/17453670903039544.

  4. E Gomez-Barrena, NG Padilla-Eguiluz, E Garcia-Rey, J Cordero-Ampuero, E Garcia-Cimbrelo. Factors influencing regional variability in the rate of total knee arthroplasty. Knee. 2014;21(1):236–41.

  5. Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27(2):302–45.

  6. Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1–e25.

  7. Barth E, Myrvik QM, Wagner W, Gristina AG. Biomaterials. 1989;10:325.

    Article  Google Scholar 

  8. Rupp ME, Archer GL. Clin Infect Dis. 1994;19:231.

    Article  Google Scholar 

  9. Gristina AG. Science. 1987;237:1588.

    Article  Google Scholar 

  10. An YH, Friedman RJ. J Biomed Mater Res. 1998;43:338. doi:10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B [pii].

    Article  Google Scholar 

  11. Katsikogianni M, Missirlis YF. Eur Cell Mater. 2004;8:37. doi:vol008a05 [pii].

    Article  Google Scholar 

  12. Lozano D, Hernández-López JM, Esbrit P, et al. Influence of the nanostructure of Fdoped TiO2 films on osteoblast growth and function.J Biomed Mater Res A. 2015;103(6):1985–90.

  13. Rochford ET, Richards RG, Moriarty TF. Influence of material on the development of device-associated infections. Clin Microbiol Infect 2012;18(12):1162–7.

  14. Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34(34):8533–54.

  15. Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bioinspired approaches. Acta Biomater. 2012;8(5):1670–84.

  16. Pérez-Jorge C, Pérez-Tanoira R, Arenas MA, Matykina E, Conde A, Damborenea JJ, Gomez-Barrena E, Esteban J. Bacterial adherence to anodized titanium alloy. Journal of Physics: Conference Series 2010;252.

  17. Arenas MA, Pérez-Jorge C, Conde A, Matykina E, Hernández-López JM, Pérez-Tanoira R, de Damborenea JJ, Gómez-Barrena E, Esteba J. Doped TiO2 anodic layers of enhanced antibacterial properties.Colloids Surf B Biointerfaces. 2013;105:106–12.

  18. Arenas M, Conde A, de Damborenea J, et al. PATENT PCT/ES2011/070342. 2010; Spain.

  19. American Society for Testing and Materials ASTM. Standard Test Method for Quantification of Pseudomonas aeruginosa Biofilm Grown with High Shear and Continuous Flow using CDC Biofilm Reactor. 2007. ASTM International. West Conshohocken. 10.1520/E2196 - 12West Conshohocken.

  20. Zelver N, Hamilton M, Pitts B, et al. Methods Enzymol. 1999;310:608. doi:S0076-6879(99)10047-8 [pii].

  21. Herigstad B, Hamilton M, Heersink J. J Microbiol Methods. 2001;44:121. doi:S0167701200002414 [pii].

    Article  Google Scholar 

  22. R M. FEMS Microbiology Letters. 1980;9:29.

  23. Pérez-Jorge C, Conde A, Arenas MA, Pérez-Tanoira R, Matykina E, de Damborenea JJ, Gómez-Barrena E, Esteban J. In vitro assessment of Staphylococcus epidermidis and Staphylococcus aureus adhesion on TiO2 nanotubes on Ti-6Al-4V alloy. J Biomed Mater Res A. 2012;100(7):1696–705.

  24. Zhao L, Chu PK, Zhang Y, Wu Z. J Biomed Mater Res B Appl Biomater. 2009;91:470. doi:10.1002/jbm.b.31463.

    Article  Google Scholar 

  25. Kingshott P, Andersson G, McArthur SL, Griesser HJ. Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol. 2011;15(5):667–76.

  26. Sutton SV, Bender GR, Marquis RE. Infect Immun. 1987;55:2597.

    Google Scholar 

  27. Yoshinari M, Oda Y, Kato T, Okuda K. Biomaterials. 2001;22:2043. doi:S0142961200003926 [pii].

    Article  Google Scholar 

  28. Truong VK, Lapovok R, Estrin YS, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 2010;31(13):3674–83.

  29. Kinnari TJ, Peltonen LI, Kuusela P, Kivilahti J, Kononen M, Jero J. Otol Neurotol. 2005;26:380. doi:00129492-200505000-00010 [pii].

    Article  Google Scholar 

  30. Rosenberg M. FEMS Microbiol Lett. 2006;262:129. doi:FML291 [pii] 10.1111/j.1574-6968.2006.00291.x.

    Article  Google Scholar 

  31. Depprich RA, Handschel JG, Meyer U, Meissner G. J Prosthet Dent. 2008;99:400. doi:S0022-3913(08)60089-X [pii] 10.1016/S0022-3913(08)60089-X.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the following grants from the Spanish MINECO (MAT2013-48224-C2-2-R and MAT2013-48224-C2-1-R). Pérez-Jorge C wishes to thank J William Costerton and the Medical Biofilm Laboratory at the Center for Biofilm Engineering in Montana, USA, for the opportunity to be a visiting researcher and the National Spanish Society of Infection Diseases and Microbiology (SEIMC) for funding with a Mobility grant 2012. Hernández-López J.M. is receptor of the JAE-predoctoral grant funded by the CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Esteban.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Jorge, C., Arenas, MA., Conde, A. et al. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine. J Mater Sci: Mater Med 28, 8 (2017). https://doi.org/10.1007/s10856-016-5811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5811-5

Keywords

Navigation