Skip to main content

Advertisement

Log in

In vitro comparison of the efficacy of TGF-β1 and PDGF-BB in combination with freeze-dried bone allografts for induction of osteogenic differentiation in MG-63 osteoblast-like cells

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Predictable regeneration of alveolar bone defects has always been a challenge in implant dentistry. Bone allografts are widely used bone substitutes with controversial osteoinductive activity. This in vitro study aimed to assess the osteogenic potential of some commercially available freeze-dried bone allografts supplemented with human recombinant platelet-derived growth factor-BB and transforming growth factor beta-1. Cell viability, mineralization, and osteogenic gene expression of MG-63 osteoblast-like cells were compared among the allograft alone, allograft/platelet-derived growth factor-BB, allograft/transforming growth factor beta-1, and allograft/platelet-derived growth factor-BB/transforming growth factor beta-1 groups. The methyl thiazol tetrazolium assay, real-time quantitative reverse transcription polymerase chain reaction and alizarin red staining were performed, respectively, for assessment of cell viability, differentiation, and mineralization at 24–72 h post treatment. The allograft with greater cytotoxic effect on MG-63 cells caused the lowest differentiation among the groups. In comparison with allograft alone, allograft/transforming growth factor beta-1, and allograft/transforming growth factor beta-1/platelet-derived growth factor-BB caused significant upregulation of bone sialoprotein and osteocalcin osteogenic mid-late marker genes, and resulted in significantly higher amounts of calcified nodules especially in mineralized non-cytotoxic allograft group. Supplementation of platelet-derived growth factor-BB alone in 5 ng/mL concentration had no significant effect on differentiation or mineralization markers. According to the results, transforming growth factor beta-1 acts synergistically with bone allografts to enhance the osteogenic differentiation potential. Therefore, this combination may be useful for rapid transformation of undifferentiated cells into bone-forming cells for bone regeneration. However, platelet-derived growth factor-BB supplementation did not support this synergistic ability to enhance osteogenic differentiation and thus, further investigations are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Snyder MB. Treatment of a large postextraction buccal wall defect with mineralized allograft, beta-TCP, and rhPDGF-BB: a growth factor-mediated bone regenerative approach. Int J Periodontics Restorative Dent. 2012;32(6):705–11.

    Google Scholar 

  2. Zander HA, Polson AM, Heijl LC. Goals of periodontal therapy. J periodontol. 1976;47(5):261–6. doi:10.1902/jop.1976.47.5.261.

    Article  Google Scholar 

  3. Benatti BB, Silverio KG, Casati MZ, Sallum EA, Nociti FH Jr. Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells. J Biosci Bioeng. 2007;103(1):1–6. doi:10.1263/jbb.103.1.

    Article  Google Scholar 

  4. Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Rev Med Devices. 2006;3(1):49–57. doi:10.1586/17434440.3.1.49.

    Article  Google Scholar 

  5. Gurinsky BS, Mills MP, Mellonig JT. Clinical evaluation of demineralized freeze-dried bone allograft and enamel matrix derivative versus enamel matrix derivative alone for the treatment of periodontal osseous defects in humans. J Periodontol. 2004;75(10):1309–18. doi:10.1902/jop.2004.75.10.1309.

    Article  Google Scholar 

  6. Vaziri S, Vahabi S, Torshabi M, Hematzadeh S. In vitro assay for osteoinductive activity of different demineralized freeze-dried bone allograft. J Periodontal Implant Sci. 2012;42(6):224–30. doi:10.5051/jpis.2012.42.6.224.

    Article  Google Scholar 

  7. Lafzi A, Vahabi S, Ghods S, Torshabi M. In vitro effect of mineralized and demineralized bone allografts on proliferation and differentiation of MG-63 osteoblast-like cells. Cell Tissue Bank. 2016;17(1):91–104. doi:10.1007/s10561-015-9516-7.

    Article  Google Scholar 

  8. Karring T, Lindhe J. Concepts in periodontal tissue regeneration. In: Lindhe J, Lang NP, Karring T, editors. Clinical Periodontology and Implant Dentistry. Vol. 1. Oxford: Blackwell Munksgaard Publication; 2008. p. 541–69.

  9. Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008;112(2):295–307. doi:10.1182/blood-2007-07-103697.

    Article  Google Scholar 

  10. Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292–309. doi:10.1016/j.addr.2012.01.016.

    Article  Google Scholar 

  11. Cenni E, Perut F, Ciapetti G, Savarino L, Dallari D, Cenacchi A, et al. In vitro evaluation of freeze-dried bone allografts combined with platelet rich plasma and human bone marrow stromal cells for tissue engineering. J Mater Sci Mater Med. 2009;20(1):45–50. doi:10.1007/s10856-008-3544-9.

    Article  Google Scholar 

  12. Dereka XE, Markopoulou CE, Vrotsos IA. Role of growth factors on periodontal repair. Growth Factors. 2006;24(4):260–7.

    Article  Google Scholar 

  13. Jayakumar A, Rajababu P, Rohini S, Butchibabu K, Naveen A, Reddy PK, et al. Multi-centre, randomized clinical trial on the efficacy and safety of recombinant human platelet-derived growth factor with beta-tricalcium phosphate in human intra-osseous periodontal defects. J Clin Periodontol. 2011;38(2):163–72. doi:10.1111/j.1600-051X.2010.01639.x.

    Article  Google Scholar 

  14. Kaigler D, Avila G, Wisner-Lynch L, Nevins M, Nevins M, Rasperini G, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther. 2011;11(3):375–85.

    Article  Google Scholar 

  15. Suarez-Lopez Del Amo F, Monje A, Padial-Molina M, Tang Z, Wang HL. Biologic agents for periodontal regeneration and implant site development. Biomed Res Int. 2015;2015:957518. p. 10. doi:10.1155/2015/957518.

  16. Nevins M, Reynolds M. Tissue engineering with recombinant human platelet-derived growth factor BB for implant site development. Compend Contin Educ Dent. 2011;32(2):20–7.

    Google Scholar 

  17. Nevins M, Hanratty J, Lynch SE. Clinical results using recombinant human platelet-derived growth factor and mineralized freeze-dried bone allograft in periodontal defects. Int J Periodontics Restorative Dent. 2007;27(5):421–7.

    Google Scholar 

  18. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8(2):133–46.

    Article  Google Scholar 

  19. Becker W, Schenk R, Higuchi K, Lekholm U, Becker BE. Variations in bone regeneration adjacent to implants augmented with barrier membranes alone or with demineralized freeze-dried bone or autologous grafts: a study in dogs. Int J Oral Maxillofac Implants. 1995;10(2):143–54.

    Google Scholar 

  20. Massague J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell. 1996;85(7):947–50.

    Article  Google Scholar 

  21. Almutair A. Biologics in periodontal practice, review. J Am Sci. 2015;11(11):76–86.

    Google Scholar 

  22. Roberts SJ, Chen Y, Moesen M, Schrooten J, Luyten FP. Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Res. 2011;7(2):137–44. doi:10.1016/j.scr.2011.04.003.

    Article  Google Scholar 

  23. Miron RJ, Zhang YF. Osteoinduction: a review of old concepts with new standards. J Dent Res. 2012;91(8):736–44. doi:10.1177/0022034511435260.

    Article  Google Scholar 

  24. Wei L, Miron RJ, Shi B, Zhang Y. Osteoinductive and osteopromotive variability among different demineralized bone allografts. Clin Implant Dent Relat Res. 2015;17(3):533–42. doi:10.1111/cid.12118.

    Article  Google Scholar 

  25. Bormann N, Pruss A, Schmidmaier G, Wildemann B. In vitro testing of the osteoinductive potential of different bony allograft preparations. Arch Orthop Trauma Surg. 2010;130(1):143–9. doi:10.1007/s00402-009-0908-7.

    Article  Google Scholar 

  26. Greenspan D. Physical and chemical properties of commercially available mineralized bome allograft. Carlsbad, CA: Zimmer Dental Inc; 2012. p. 1–8.

    Google Scholar 

  27. Zhao L, Jiang S, Hantash BM. Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A. 2010;16(2):725–33. doi:10.1089/ten.TEA.2009.0495.

    Article  Google Scholar 

  28. Aloise AC, Pereira MD, Duailibi SE, Gragnani A, Ferreira LM. TGF-beta1 on induced osteogenic differentiation of human dermal fibroblast. Acta Cir Bras. 2014;29(Suppl 1):1–6.

    Article  Google Scholar 

  29. Zhang H, Ahmad M, Gronowicz G. Effects of transforming growth factor-beta 1 (TGF-beta1) on in vitro mineralization of human osteoblasts on implant materials. Biomaterials. 2003;24(12):2013–20.

    Article  Google Scholar 

  30. Zhao Y, Zhang S, Zeng D, Xia L. rhPDGF-BB promotes proliferation and osteogenic differentiation of bone marrow stromal cells from streptozotocin-induced diabetic rats through ERK pathway. Biomed Res Int. 2014;2014:637415. doi:10.1155/2014/637415.

  31. Kumar A, Salimath B, Stark G, Finkenzeller G. Platelet-derived growth factor receptor signaling is not involved in osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2010;16(3):983–93. doi:10.1089/ten.TEA.2009.0230.

    Article  Google Scholar 

  32. Ogata Y. Bone sialoprotein and its transcriptional regulatory mechanism. J Periodontal Res. 2008;43(2):127–35. doi:10.1111/j.1600-0765.2007.01014.x.

    Article  Google Scholar 

  33. Mezawa M, Araki S, Takai H, Sasaki Y, Wang S, Li X, et al. Regulation of human bone sialoprotein gene transcription by platelet-derived growth factor-BB. Gene. 2009;435(1-2):80–7. doi:10.1016/j.gene.2008.12.020.

    Article  Google Scholar 

  34. Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH. Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol. 2008;39(2):153–60. doi:10.1007/s10735-007-9148-8.

    Article  Google Scholar 

  35. Ajlan SA, Ashri NY, Aldahmash AM, Alnbaheen MS. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health. 2015;15(1):132 doi:10.1186/s12903-015-0113-8.

    Article  Google Scholar 

  36. Hung B, Hutton D, Kozielski K, Bishop C, Naved B, Green J, et al. Platelet-derived growth factor bb enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells. 2015;33:2773–84.

    Article  Google Scholar 

  37. Darby IB, Morris KH. A systematic review of the use of growth factors in human periodontal regeneration. J Periodontol. 2013;84(4):465–76. doi:10.1902/jop.2012.120145.

    Article  Google Scholar 

  38. Mott DA, Mailhot J, Cuenin MF, Sharawy M, Borke J. Enhancement of osteoblast proliferation in vitro by selective enrichment of demineralized freeze-dried bone allograft with specific growth factors. J Oral Implantol. 2002;28(2):57–66. doi:10.1563/1548-1336(2002).

    Article  Google Scholar 

  39. Yamano S, Lin T, Dai J, Fabella K, Moursi A. Bioactive collagen membrane as a carrier for sustained release of PDGF. J Tissue Sci Eng. 2011;2(4):1–6. doi:10.4172/2157-7552.1000110.

    Article  Google Scholar 

  40. Yamano S, Haku K, Yamanaka T, Dai J, Takayama T, Shohara R, et al. The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration. Biomaterials. 2014;35(8):2446–53. doi:10.1016/j.biomaterials.2013.12.006.

    Article  Google Scholar 

  41. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation. Colloids Surf B Biointerfaces. 2016;139:68–78. doi:10.1016/j.colsurfb.2015.11.053.

    Article  Google Scholar 

  42. Papadopoulos CE, Dereka XE, Vavouraki EN, Vrotsos IA. In vitro evaluation of the mitogenic effect of platelet-derived growth factor-BB on human periodontal ligament cells cultured with various bone allografts. J periodontol. 2003;74(4):451–7. doi:10.1902/jop.2003.74.4.451.

    Article  Google Scholar 

  43. Hung LM, Tsai CH, Chen JK. TGF-beta1 selectively suppresses PDGF receptor signaling pathways in MG-63 human osteosarcoma cell. Life Sci. 1997;61(7):685–93.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by “Tissue Regeneration Corporation” Company (http://www.trcir.com/). The authors thank the “Molecular and Cellular Oral Biology” laboratory (Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences) for providing technical support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Torshabi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahabi, S., Torshabi, M. & Esmaeil Nejad, A. In vitro comparison of the efficacy of TGF-β1 and PDGF-BB in combination with freeze-dried bone allografts for induction of osteogenic differentiation in MG-63 osteoblast-like cells. J Mater Sci: Mater Med 27, 182 (2016). https://doi.org/10.1007/s10856-016-5802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5802-6

Keywords

Navigation