Skip to main content

Advertisement

Log in

Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5–400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

CMP-UNCD:

Chemically-mechanically polished ultrananocrystalline diamond

DI:

Deionized

hBMSCs:

Human bone marrow-derived mesenchymal stem cells

MPCVD:

Microwave plasma chemical vapor deposition

NCD:

Nanocrystalline diamond

NCD-L:

Nanocrystalline diamond—Large grain sizes

NCD-M:

Nanocrystalline diamond—Medium grain sizes

NCD-S:

Nanocrystalline diamond—Small grain sizes

PBS:

Phosphate buffered saline

PSN:

Penicillin-Streptomycin-Neomycin

RMS:

Root-mean-square

SCCM:

Standard cubic centimeters per minute (at standard temperature and pressure)

SEM:

Scanning electron microscopy

TCPS:

Tissue culture polystyrene

UHMWPE:

Ultra-high molecular weight polyethylene

UNCD:

Ultrananocrystalline diamond

References

  1. Mohammadi H, Mequanint K. Prosthetic aortic heart valves: modeling and design. Med Eng Phys. 2011;33:131–47.

    Article  Google Scholar 

  2. Ritchie RO. Fatigue and fracture of pyrolytic carbon: a damage- tolerant approach to structural integrity and life prediction in “ceramic” heart valve prostheses. J Heart Valve Dis. 1996;5:S9–31.

    Google Scholar 

  3. Olcott EL. Pyrolytic biocarbon materials. J Biomed Mater Res. 1974;8:209–17.

    Article  Google Scholar 

  4. Bernasek TL, Stahl JL, Pupello D. Pyrolytic carbon endoprosthetic replacement for osteonecrosis and femoral fracture of the hip: a pilot study. Clin Orthop Relat Res. 2009;467:1826–32.

    Article  Google Scholar 

  5. Phillips SJ. Thrombogenic influence of biomaterials in patients with the Omni series heart valve: pyrolytic carbon versus titanium. ASAIO J. 2001;47:429–31.

    Article  Google Scholar 

  6. Schoen FJ, Titus JL, Lawrie GM. Durability of pyrolytic carbon-containing heart valve prostheses. J Biomed Mater Res. 1982;16(5):559–70.

    Article  Google Scholar 

  7. Cook SD, Beckenbaugh RD, Redondo J, Popich LS, Klawitter JJ, Linscheid RL. Long-term follow-up of pyrolytic carbon metacarpophalangeal implants. J Bone Joint Surg Am. 1999;81:635–48.

    Article  Google Scholar 

  8. Stutz N, Meier R, Krimmer H. Pyrocarbon prosthesis for finger interphalangeal joint replacement: experience after one year. Unfallchirurg. 2005;108:365–69.

    Article  Google Scholar 

  9. Chan K, Ayeni O, McKnight L, Ignacy TA, Farrokhyar F, Thoma A. Pyrocarbon versus silicone proximal interphalangeal joint arthroplasty: a systematic review. Plast Reconstr Surg. 2013;131:114–24.

    Article  Google Scholar 

  10. Skoog SA, Miller PR, Boehn RD, Sumant AV, Polsky R, Narayan RJ. Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for electrochemical biosensing. Diamond Relat Mater. 2015;54:39–46.

    Article  Google Scholar 

  11. Butler JE, Sumant AV. The CVD of nanodiamond materials. Chem Vap Deposition. 2008;14:145–60.

    Article  Google Scholar 

  12. Metzler P, von Wilmowsky C, Stadlinger B, Zemann W, Schlegel KA, Rosiwal S, Rupprecht S. Nano-crystalline diamond-coated titanium dental implants- A histomorphometric study in adult domestic pigs. J Craniomaxillofac Surg. 2013;41:532–8.

    Article  Google Scholar 

  13. Kloss FR, Gassner R, Preiner J, Ebner A, Larsson K, Hächl O, Tuli T, Rasse M, Moser D, Laimer K, Nickel EA, Laschober G, Brunauer R, Klima G, Hinterdorfer P, Steinmüller-Nethl D, Lepperdinger G. The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation. Biomaterials. 2008;29:2433–42.

    Article  Google Scholar 

  14. Kloss FR, Singh S, Hächl O, Rentenberger J, Auberger T, Kraft A, Klima G, Mitterlechner T, Steinmüller-Nethl D, Lethaus B, Rasse M, Lepperdinger G, Gassner R. BMP-2 immobilized on nanocrystalline diamond-coated titanium screws; demonstration of osteoinductive properties in irradiated bone. Head and Neck. 2013;35:235–41.

    Article  Google Scholar 

  15. Papo MJ, Catledge SA, Vohra YK. Mechanical wear behavior of nanocrystalline and multilayer diamond coatings on temporomandibular joint implants. J Mater Sci Mater Med. 2004;15(7):773

    Article  Google Scholar 

  16. Fries MD, Vohra YK. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant. J Phys D Appl Phys. 2002;35:L105–7.

    Article  Google Scholar 

  17. Lappalainen R, Selenius M, Anttila A, Konttinen YT, Santavirta SS. Reduction of wear in total hip replacement prostheses by amorphous diamond coatings. J Biomed Mater Res Part B Appl Biomater. 2003;66B:410–3.

    Article  Google Scholar 

  18. Aspenberg P, Anttila A, Konttinen YT, Lappalainen R, Goodman SB, Nordsletten L, et al. Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials. 1996;17:807–12.

    Article  Google Scholar 

  19. Durgalakshmi D, Chandran M, Manivasagam G, Ramachandra Rao MS, Asokamani R. Studies on corrosion and wear behavior of submicrometric diamond coated Ti alloys. Tribol Int. 2013;63:132–40.

    Article  Google Scholar 

  20. Grabarczyk J, Batory D, Louda P, Couvrat P, Kotela L, Bakowicz-Mitura K. Carbon coatings for medical applications. JAMME. 2007;20:107–10.

    Google Scholar 

  21. Fries MD, Vohra YK. Microcrystalline and nanocrystalline diamond film deposition on cobalt chrome alloy. In: Vinci R, Kraft O, Moody N, Besser P, Shaffer E, editors. MRS Fall Meeting. Boston, MA: Materials Research Society; 1999.

    Google Scholar 

  22. Pareta R, Yang L, Kothari A, Sirinrath S, Xiao X, Sheldon BW, Webster TJ. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion. J Biomed Mater Res A. 2010;95:129–36.

    Article  Google Scholar 

  23. Clem WC, Chowdhury S, Catledge SA, Weimer JJ, Shaikh FM, Hennessy KM, Konovalov VV, Hill MR, Waterfeld A, Bellis SL, Vohra YK. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials. 2008;29:3461–8.

    Article  Google Scholar 

  24. Okrój W, Kamińska M, Klimek L, Szymański W, Walkowiak B. Blood platelets in contact with nanocrystalline diamond surfaces. Diamond Relat Mater. 2006;15:1535–9.

    Article  Google Scholar 

  25. Ma YP, Sun FH, Xue HG, Zhang ZM, Chen M. Deposition and characterization of nanocrystalline diamond films on Co-cemented tungsten carbide inserts. Diamond Relat Mater. 2007;16:481–5.

    Article  Google Scholar 

  26. Jakubowski W, Bartosz G, Niedzielski P, Szymanski W, Walkowiak B. Nanocrystalline diamond surface is resistant to bacterial colonization. Diamond Relat Mater. 2004;13:1761–3.

    Article  Google Scholar 

  27. Bajaj P, Akin D, Gupta A, Sherman D, Shi B, Auciello O, Bashir R. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomed Microdevices. 2007;9:787–94.

    Article  Google Scholar 

  28. Zhao W, Xu JJ, Qiu QQ, Chen HY. Nanocrystalline diamond modified gold electrode for glucose biosensing. Biosens Bioelectron. 2006;22:649–55.

    Article  Google Scholar 

  29. Krueger A, Lang D. Functionality is key: Recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012;22:890–906.

    Article  Google Scholar 

  30. Rodrigues AA, Baranauskas V, Ceragioli HJ, Peterlevitz AC, Belangero WD. In vivo preliminary evaluation of bone-microcrystalline and bone-nanocrystalline diamond interfaces. Diamond Relat Mater. 2010;19:1300–6.

    Article  Google Scholar 

  31. Kalbacova M, Rezek B, Baresova V, Wolf-Brandstetter C, Kromka A. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts. Acta Biomater. 2009;5:3076–85.

    Article  Google Scholar 

  32. Grousova L, Bacakova L, Kromka A, Potocky S, Vanecek M, Nesladek M, et al. Nanodiamond as promising material for bone tissue engineering. J Nanosci Nanotechnol. 2009;9:3524–34.

    Article  Google Scholar 

  33. Yang L, Sheldon BW, Webster TJ. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation. J Biomed Mater Res A. 2009;91:548–56.

    Article  Google Scholar 

  34. Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon and nanodiamond. Phil Trans R Soc A. 2004;362:2477–512.

    Article  Google Scholar 

  35. Michaelson S, Ternyak O, Akhvlediani R, Hoffman A, Lafosse A, Azria R, et al. Hydrogen concentration and bonding configuration in polycrystalline diamond films: From micro-to nanometric grain size. J Appl Phys. 2007;102:113516

    Article  Google Scholar 

  36. Birrell J, Gerbi JE, Auciello O, Gibson JM, Johnson J, Carlisle JA. Interpretation of the Raman spectra of ultrananocrystalline diamond. Diamond Relat Mater. 2005;14:86–92.

    Article  Google Scholar 

  37. Bruinink A, Bitar M, Pleskova M, Wick P, Krug HF, Maniura-Weber K. Addition of nanoscaled bioinspired surface features: a revolution for bone related implants and scaffolds? J Biomed Mater Res A. 2014;102:275–94.

    Article  Google Scholar 

  38. Lackner JM, Waldhauser W. Inorganic PVD and CVD coatings in medicine- A review of protein and cell adhesion on coated surfaces. J Adhes Sci Technol. 2010;24:925–61.

    Article  Google Scholar 

  39. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, et al. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater. 2009;4:045002

    Article  Google Scholar 

  40. Michiardi A, Aparicio C, Ratner BD, Planell JA, Gil J. The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials. 2007;28:586–94.

    Article  Google Scholar 

  41. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–82.

    Article  Google Scholar 

  42. Rakha SA, Guojun Y, Jianqing C. Correlation between diamond grain size and hydrogen incorporation in nanocrystalline diamond thin films. J Exp Nanosci. 2012;7:378–89.

    Article  Google Scholar 

  43. Kalbacova M, Kalbac M, Dunsch L, Kromka A, Vaněček M, Rezek B, et al. The effect of SWCNT and nano-diamond films on human osteoblast cells. Phys Status Solidi (B). 2007;244:4356–9.

    Article  Google Scholar 

  44. Yang L, Chinthapenta V, Li Q, Stout D, Liang A, Sheldon BW, et al. Understanding osteoblast responses to stiff nanotopographies through experiments and computational simulations. J Biomed Mater Res A. 2011;97:375–82.

    Article  Google Scholar 

  45. Yang L, Sheldon BW, Webster TJ. The impact of diamond nanocrystallinity on osteoblast functions. Biomaterials. 2009;30:3458–65.

    Article  Google Scholar 

  46. Anselme K, Bigerelle M. Role of materials surface topography on mammalian cell response. Int Mater Rev. 2011;56:243–66.

    Article  Google Scholar 

  47. Amaral M, Dias AG, Gomes PS, Lopes MA, Silva RF, Santos JD, et al. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. J Biomed Mater Res A. 2008;87:91–9.

    Article  Google Scholar 

Download references

Acknowledgments

Shelby Skoog was supported in part by NSF Award #1136330. Use of the Center for Nanoscale Materials, Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to acknowledge FDA intramural research funding and the FDA White Oak Nanotechnology Core Facility for instrument use, scientific, and technical assistance.

Note: The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services. The findings and conclusions in this paper have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any agency determination or policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoog, S.A., Kumar, G., Zheng, J. et al. Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings. J Mater Sci: Mater Med 27, 187 (2016). https://doi.org/10.1007/s10856-016-5798-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5798-y

Keywords

Navigation