Skip to main content

Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography

Abstract

The objective of this paper was to evaluate in vivo material properties in order to address technical aspects of computational modeling of ligaments in the tibiofemoral joint using a probabilistic method. The laxity test was applied to the anterior-posterior drawer under 30° and 90° of flexion with a series of stress radiographs, a Telos device, and computed tomography. Ligament stiffness was investigated using sensitivity analysis based on the Monte-Carlo method with a subject-specific finite element model generated from in vivo computed tomography and magnetic resonance imaging data, subjected to laxity test conditions. The material properties of ligament stiffness and initial ligament strain in a subject-specific finite element model were optimized to minimize the differences between the movements of the tibia and femur in the finite element model and the computed tomography images in the laxity test. The posterior cruciate ligament was the most significant factor in flexion and posterior drawer, while the anterior cruciate ligament primarily was the most significant factor for the anterior drawer. The optimized material properties model predictions in simulation and the laxity test were more accurate than predictions based on the initial material properties in subject-specific computed tomography measurement. Thus, this study establishes a standard for future designs in allograft, xenograft, and artificial ligaments for anterior cruciate ligament and posterior cruciate ligament injuries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys. 2005;27(10):845–61.

    Article  Google Scholar 

  2. Carey RE, Zheng L, Aiyangar AK, Harner CD, Zhang X. Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo. J Biomech Eng. 2014;136(4). doi:10.1115/1.4026228.

  3. Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res. 2003;21(6):1098–106.

    Article  Google Scholar 

  4. Limbert G, Middleton J. A constitutive model of the posterior cruciate ligament. Med Eng Phys. 2006;28(2):99–113.

    Article  Google Scholar 

  5. Dhaher YY, Kwon TH, Barry M. The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J Biomech. 2010;43(16):3118–25.

    Article  Google Scholar 

  6. Li G, Lopez O, Rubash H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng. 2001;123(4):341–6.

    Article  Google Scholar 

  7. Besier TF, Gold GE, Delp SL, Fredericson M, Beaupre GS. The influence of femoral internal and external rotation on cartilage stresses within the patellofemoral joint. J Orthop Res. 2008;26(12):1627–35.

    Article  Google Scholar 

  8. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J Orthop Res. 2004;22(4):807–14.

    Article  Google Scholar 

  9. Yao J, Funkenbusch PD, Snibbe J, Maloney M, Lerner AL. Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J Biomech Eng. 2006;128(3):399–408.

    Article  Google Scholar 

  10. Zelle J, Heesterbeek PJ, De Waal Malefijt M, Verdonschot N. Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys. 2010;32(7):700–7.

    Article  Google Scholar 

  11. Baldwin MA, Laz PJ, Stowe JQ, Rullkoetter PJ. Efficient probabilistic representation of tibiofemoral soft tissue constraint. Comput Methods Biomech Biomed Engin. 2009;12(6):651–9.

    Article  Google Scholar 

  12. Ewing JA, Kaufman MK, Hutter EE, Granger JF, Beal MD, Piazza SJ, et al. Estimating patient-specific soft-tissue properties in a TKA knee. J Orthop Res. 2016;34(3):435–43.

    Article  Google Scholar 

  13. Kang KT, Kim SH, Son J, Lee YH, Chun HJ. Probabilistic approach for determining the material properties of meniscal attachments in vivo using magnetic resonance imaging and a finite element model. J Comput Biol. 2015;22(12):1097–107.

    Article  Google Scholar 

  14. Kwon OR, Kang KT, Son J, Kwon SK, Jo SB, Suh DS, et al. Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J Orthop Res. 2014;32(2):338–45.

    Article  Google Scholar 

  15. Kim YS, Kang KT, Son J, Kwon OR, Choi YJ, Jo SB, et al. Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis. Arthroscopy. 2015;31(12):2380–91.

    Article  Google Scholar 

  16. Garavaglia G, Lubbeke A, Dubois-Ferriere V, Suva D, Fritschy D, Menetrey J. Accuracy of stress radiography techniques in grading isolated and combined posterior knee injuries: a cadaveric study. Am J Sports Med. 2007;35(12):2051–6.

    Article  Google Scholar 

  17. Margheritini F, Mancini L, Mauro CS, Mariani PP. Stress radiography for quantifying posterior cruciate ligament deficiency. Arthroscopy. 2003;19(7):706–11.

    Article  Google Scholar 

  18. Jacobsen K. Stress radiographical measurement of the anteroposterior, medial and lateral stability of the knee joint. Acta Orthop Scand. 1976;47(3):335–44.

    Article  Google Scholar 

  19. Staubli HU, Jakob RP. Posterior instability of the knee near extension: a clinical and stress radiographic analysis of acute injuries of the posterior cruciate ligament. J Bone Joint Surg Br. 1990;72(2):225–30.

    Google Scholar 

  20. Cobb JP, Dixon H, Dandachli W, Iranpour F. The anatomical tibial axis: reliable rotational orientation in knee replacement. J Bone Joint Surg Br. 2008;90(8):1032–8.

    Article  Google Scholar 

  21. Koo S, Gold GE, Andriacchi TP. Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy. Osteoarthr Cartil. 2005;13(9):782–9.

    Article  Google Scholar 

  22. Pena E, Calvo B, Martinez MA, Doblare M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006;39(9):1686–701.

    Article  Google Scholar 

  23. Shelburne KB, Torry MR, Pandy MG. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res. 2006;24(10):1983–90.

    Article  Google Scholar 

  24. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am. 2007;89(9):2000–10.

    Google Scholar 

  25. LaPrade RF, Morgan PM, Wentorf FA, Johansen S, Engebretsen L. The anatomy of the posterior aspect of the knee: an anatomic study. J Bone Joint Surg Am. 2007;89(4):758–64.

    Google Scholar 

  26. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL. Quantitative analysis of human cruciate ligament insertions. Arthroscopy. 1999;15(7):741–9.

    Article  Google Scholar 

  27. Blankevoort L, Huiskes R. Validation of a three-dimensional model of the knee. J Biomech. 1996;29(7):955–61.

    Article  Google Scholar 

  28. Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech. 1994;27(1):13–24.

    Article  Google Scholar 

  29. Robinson JR, Bull AM, Amis AA. Structural properties of the medial collateral ligament complex of the human knee. J Biomech. 2005;38(5):1067–74.

    Article  Google Scholar 

  30. Easley SK, Pal S, Tomaszewski PR, Petrella AJ, Rullkoetter PJ, Laz PJ. Finite element-based probabilistic analysis tool for orthopaedic applications. Comput Methods Programs Biomed. 2007;85(1):32–40.

    Article  Google Scholar 

  31. Kang KT, Kim SH, Son J, Lee YH, Chun HJ. Probabilistic evaluation of the material properties of the in vivo subject-specific articular surface using a computational model. J Biomed Mater Res B Appl Biomater. 2016. doi:10.1002/jbm.b.33666.

  32. Pugh L, Mascarenhas R, Arneja S, Chin PY, Leith JM. Current concepts in instrumented knee-laxity testing. Am J Sports Med. 2009;37(1):199–210.

    Article  Google Scholar 

  33. Kang KT, Kim SH, Son J, Lee YH, Chun HJ. In vivo evaluation of the subject-specific finite element model for knee joint cartilage contact area. Int J Precision Eng Manuf. 2015;16(6):1171–7.

    Article  Google Scholar 

  34. Li G, Suggs J, Gill T. The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Ann Biomed Eng. 2002;30(5):713–20.

    Article  Google Scholar 

  35. Lenhart RL, Kaiser J, Smith CR, Thelen DG. Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann Biomed Eng. 2015;43(11):2675–85.

    Article  Google Scholar 

  36. Song Y, Debski RE, Musahl V, Thomas M, Woo SL. A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech. 2004;37(3):383–90.

    Article  Google Scholar 

  37. Nau T, Chevalier Y, Hagemeister N, Duval N, deGuise JA. 3D kinematic in-vitro comparison of posterolateral corner reconstruction techniques in a combined injury model. Knee Surg Sports Traumatol Arthrosc. 2005;13(7):572–80.

    Article  Google Scholar 

  38. Chun YM, Kim SJ, Kim HS. Evaluation of the mechanical properties of posterolateral structures and supporting posterolateral instability of the knee. J Orthop Res. 2008;26(10):1371–6.

    Article  Google Scholar 

  39. Wang L, Lin L, Feng Y, Fernandes TL, Asnis P, Hosseini A, et al. Anterior cruciate ligament reconstruction and cartilage contact forces—a 3D computational simulation. Clin Biomech. 2015;30(10):1175–80.

    Article  Google Scholar 

  40. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13(3):184–8.

    Article  Google Scholar 

  41. Cosgarea AJ, Jay PR. Posterior cruciate ligament injuries: evaluation and management. J Am Acad Orthop Surg. 2001;9(5):297–307.

    Article  Google Scholar 

  42. Barry MJ, Kwon TH, Dhaher YY. Probabilistic musculoskeletal modeling of the knee: A preliminary examination of an ACL-reconstruction. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5440–3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heoung-Jae Chun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Kyoung-Tak Kang and Sung-Hwan Kim have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, KT., Kim, SH., Son, J. et al. Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography. J Mater Sci: Mater Med 27, 183 (2016). https://doi.org/10.1007/s10856-016-5797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5797-z

Keywords

  • Anterior Cruciate Ligament
  • Finite Element Model
  • Posterior Cruciate Ligament
  • Intraclass Correlation Coefficient
  • Knee Laxity