Skip to main content
Log in

TiO2-containing and ZnO-containing borosilicate glass—a novel thin glass with exceptional antibiofilm performances to prevent microfouling

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biofilm formation, also known as microfouling, on indwelling medical devices such as catheters or prosthetic joints causes difficult to treat and recurrent infections. It is also the initial step for biocorrosion of surfaces in aquatic environment. An efficient prevention of microfouling is preferable but the development of antibiofilm surfaces is enormously challenging. Therefore, soda-lime, aluminosilicate, and three borosilicate glasses with different TiO2 and ZnO compositions were investigated on their feasibility to prevent biofilm formation by standardized in vitro biofilm assays using different pathogenic bacteria. Furthermore, the biocompatibility of these glasses was evaluated using eukaryotic cell lines end erythrocytes. Only two borosilicate glasses, containing TiO2 and ZnO, showed an increased antibiofilm performance inhibiting biofilm adhesion and formation. The biofilm thickness and area were significantly reduced by over 90 % and characterized by diffuse structures. All tested glass types showed neither cytotoxicity nor hemotoxicity. Therefore, the antibiofilm borosilicate-thin glasses are qualified for surface coatings where biofilms are not desirable such as on medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209. doi:10.1146/annurev.micro.56.012302.160705.

    Article  Google Scholar 

  2. Callow ME, Callow JE. Marine biofouling: a sticky problem. Biologist. 2002;49(1):10–4.

    Google Scholar 

  3. Flemming H-C. Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions. Biofilm highlights. Springer-Verlag Berlin Heidelberg; 2011. pp. 81–109.

  4. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277–81. doi:10.3201/eid0702.700277.

    Article  Google Scholar 

  5. Langmark J, Storey MV, Ashbolt NJ, Stenstrom TA. Biofilms in an urban water distribution system: measurement of biofilm biomass, pathogens and pathogen persistence within the Greater Stockholm Area, Sweden. Water Sci Technol. 2005;52(8):181–9.

    Google Scholar 

  6. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011;27(9):1017–32. doi:10.1080/08927014.2011.626899.

    Article  Google Scholar 

  7. Ito A, Taniuchi A, May T, Kawata K, Okabe S. Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol. 2009;75(12):4093–100. doi:AEM.02949-08 [pii] 10.1128/AEM.02949-08.

    Article  Google Scholar 

  8. Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72(6):3916–23. doi:72/6/3916 [pii] 10.1128/AEM.03022-05.

    Article  Google Scholar 

  9. Leid JG. Bacterial biofilms resist key host defenses. Microbe. 2009;4(2):66–70.

    Google Scholar 

  10. Fux C, Costerton J, Stewart P, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40.

    Article  Google Scholar 

  11. Agarwal A, Singh KP, Jain A. Medical significance and management of staphylococcal biofilm. FEMS Immunol Med Microbiol. 2010;58(2):147–60. doi:FIM601 [pii] 10.1111/j.1574-695X.2009.00601.x.

    Article  Google Scholar 

  12. Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clinic proceedings. 2006;81(9):1159–71. doi:10.4065/81.9.1159.

    Article  Google Scholar 

  13. Uckay I, Pittet D, Vaudaux P, Sax H, Lew D, Waldvogel F. Foreign body infections due to Staphylococcus epidermidis. Ann Med. 2009;41(2):109–19. doi:10.1080/07853890802337045.

    Article  Google Scholar 

  14. Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 2013;14(9):18488–501. doi:ijms140918488 [pii] 10.3390/ijms140918488.

    Article  Google Scholar 

  15. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–9.

    Article  Google Scholar 

  16. Klueh U, Wagner V, Kelly S, Johnson A, Bryers J. Efficacy of silver‐coated fabric to prevent bacterial colonization and subsequent device‐based biofilm formation. J Biomed Mater Res. 2000;53(6):621–31.

    Article  Google Scholar 

  17. McLean RJ, Hussain A, Sayer M, Vincent PJ, Hughes DJ, Smith TJ. Antibacterial activity of multilayer silver-copper surface films on catheter material. Can J Microbiol. 1993;39(9):895–9.

    Article  Google Scholar 

  18. Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials. 2002;23(6):1417–23.

    Article  Google Scholar 

  19. Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, et al. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19(7–9):851–9. doi:10.1016/S0142-9612(97)00245-7.

    Article  Google Scholar 

  20. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011;7(4):1431–40. doi:10.1016/j.actbio.2010.11.005.

    Article  Google Scholar 

  21. Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling. 2006;22(5):339–60.

    Article  Google Scholar 

  22. Stollberg D, Carter W, Hampikian JM. Nanohardness and fracture toughness of combustion chemical vapor deposition deposited yittria stabilized zirconia–alumina films. Thin Solid Films. 2005;483(1):211–7.

    Article  Google Scholar 

  23. Ericsson M, Hanstorp D, Hagberg P, Enger J, Nystrom T. Sorting out bacterial viability with optical tweezers. J Bacteriol. 2000;182(19):5551–5.

    Article  Google Scholar 

  24. Schmidt C, Lautenschlaeger C, Collnot EM, Schumann M, Bojarski C, Schulzke JD, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. J Control Release. 2013;165(2):139–45. doi:10.1016/j.jconrel.2012.10.019.

    Article  Google Scholar 

  25. Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol Biosci. 2012;12(7):986–98. doi:10.1002/mabi.201200017.

    Article  Google Scholar 

  26. Park JT, Uehara T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev. 2008;72(2):211–27.

    Article  Google Scholar 

  27. Monteiro C, Fang X, Ahmad I, Gomelsky M, Römling U. Regulation of biofilm components in Salmonella enterica serovar Typhimurium by lytic transglycosylases involved in cell wall turnover. J Bacteriol. 2011;193(23):6443–51.

    Article  Google Scholar 

  28. Lansdown AB, Mirastschijski U, Stubbs N, Scanlon E, Ågren MS. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007;15(1):2–16.

    Article  Google Scholar 

  29. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobio C. 2000;1(1):1–21. doi:10.1016/S1389-5567(00)00002-2.

    Article  Google Scholar 

  30. Parvizi J, Wickstrom E, Zeiger AR, Adams CS, Shapiro IM, Purtill JJ, et al. Frank Stinchfield Award: titanium surface with biologic activity against infection. Clin Orthop Relat Res. 2004;429:33–8.

    Article  Google Scholar 

  31. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621–39.

    Article  Google Scholar 

  32. Freedman LD, Doak G, Long GG, Mahmood T, Lindhal CB. Antimony compounds. Kirk-Othmer Encyclopedia of Chemical Technology. 2007.

  33. Mahajan K, Fahmi N, Singh RV. Synthesis, characterization and antimicrobial studies of Sb (III) complexes of substituted thioimines. Indian J Chem. 2007;46:1221–5.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Research and Technology Development of SCHOTT AG (Mainz) for the collaboration and for provision of the glass slides. This work was supported by a grant from the Federal Ministry of Education and Research (Germany), grant numbers 01EO1002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Klinger-Strobel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinger-Strobel, M., Makarewicz, O., Pletz, M.W. et al. TiO2-containing and ZnO-containing borosilicate glass—a novel thin glass with exceptional antibiofilm performances to prevent microfouling. J Mater Sci: Mater Med 27, 175 (2016). https://doi.org/10.1007/s10856-016-5792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5792-4

Keywords

Navigation