Skip to main content
Log in

Technology and vascularized composite allotransplantation (VCA)—lessons learned from the first bilateral pediatric hand transplant

  • Tissue Regeneration or Regeneration of Engineered Tissue
  • Review Article
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The reconstructive principle of replacing “like with like” is best met with vascularized composite allotransplantation in which the components of an existing defect are “matched” to the greatest extent possible in a single stage restoration. Hand transplantation is a labor-intensive and time-intensive process and can be conceptualized into distinct phases that include (1) patient selection and preoperative preparation, (2) technical execution of the procedure, and (3) postoperative rehabilitation and follow-up. The advent of technological innovations, such as 3D printing technology, novel implant technology, as well as innovative imaging technology, such as functional magnetic resonance imaging have the potential of favorably affecting all phases of this process, thus contributing to improved outcomes. The use of these technologies in the world’s first case of bilateral hand transplantation in a pediatric patient is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dubernard JM, Owen E, Herzberg G, et al. Human hand allograft: report on first 6 months. Lancet 1999;353:1315–20.

    Article  Google Scholar 

  2. Dubernard JM, Owen E, Herzberg G, et al. [The first transplantation of a hand in humans. Early results]. Chirurgie. 1999;124:358–65. discussion. 365–7.

    Article  Google Scholar 

  3. Jones JW, Gruber SA, Barker JH, Breidenbach WC. Successful hand transplantation. One-year follow-up. Louisville hand transplant team. N Engl J Med. 2000;343:468–73.

    Article  Google Scholar 

  4. Devauchelle B, Badet L, Lengele B, et al. First human face allograft: early report. Lancet. 2006;368:203–9.

    Article  Google Scholar 

  5. Sosin M, Rodriguez ED. The face transplantation update: 2016. Plast Reconstr Surg. 2016;137:1841–50.

    Article  Google Scholar 

  6. Giele H, Vaidya A, Reddy S, Vrakas G, Friend P. Current state of abdominal wall transplantation. Curr Opin Organ Transplant 2016;21:159–64.

    Article  Google Scholar 

  7. Gerlach UA, Vrakas G, Sawitzki B, et al. Abdominal wall transplantation: skin as a sentinel marker for rejection. Am J Transplant 2016;16:1892–1900.

    Article  Google Scholar 

  8. Chang J, Mathes DW. Ethical, financial, and policy considerations in hand transplantation. Hand Clin. 2011;27:553–60. xi.

    Article  Google Scholar 

  9. Shores JT, Brandacher G, Schneeberger S, Gorantla VS, Lee WP. Composite tissue allotransplantation: hand transplantation and beyond. J Am Acad Orthop Surg. 2010;18:127–31.

    Article  Google Scholar 

  10. Shores JT, Brandacher G, Lee WP. Hand and upper extremity transplantation: an update of outcomes in the worldwide experience. Plast Reconstr Surg. 2015;135:351e–60e.

    Article  Google Scholar 

  11. Ravindra KV, Wu S, Bozulic L, Xu H, Breidenbach WC, Ildstad ST. Composite tissue transplantation: a rapidly advancing field. Transplant Proc. 2008;40:1237–48.

    Article  Google Scholar 

  12. Arslan E, Klimczak A, Siemionow M. Chimerism induction in vascularized bone marrow transplants augmented with bone marrow cells. Microsurgery 2007;27:190–9.

    Article  Google Scholar 

  13. Petruzzo P, Lanzetta M, Dubernard JM, et al. The international registry on hand and composite tissue transplantation. Transplantation 2010;90:1590–4.

    Article  Google Scholar 

  14. Hartzell TL, Benhaim P, Imbriglia JE, et al. Surgical and technical aspects of hand transplantation: is it just another replant? Hand Clin. 2011;27:521–30. x.

    Article  Google Scholar 

  15. Tobin GR, Breidenbach WC 3rd, Pidwell DJ, Ildstad ST, Ravindra KV. Transplantation of the hand, face, and composite structures: evolution and current status. Clin Plast Surg. 2007;34:271–8. ix–x.

    Article  Google Scholar 

  16. Dobbels F, Vanhaecke J, Dupont L, et al. Pretransplant predictors of posttransplant adherence and clinical outcome: an evidence base for pretransplant psychosocial screening. Transplantation. 2009;87:1497–1504.

    Article  Google Scholar 

  17. Bucuvalas JC, Alonso E. Long-term outcomes after liver transplantation in children. Curr Opin Organ Transplant. 2008;13:247–51.

    Article  Google Scholar 

  18. Shemesh E, Shneider BL, Savitzky JK, et al. Medication adherence in pediatric and adolescent liver transplant recipients. Pediatrics 2004;113:825–32.

    Article  Google Scholar 

  19. Fredericks EM, Lopez MJ, Magee JC, Shieck V, Opipari-Arrigan L. Psychological functioning, nonadherence and health outcomes after pediatric liver transplantation. Am J Transplant. 2007;7:1974–83.

    Article  Google Scholar 

  20. Gurnaney HG, Fiadjoe JE, Levin LS, et al. Anesthetic management of the first pediatric bilateral hand transplant. Can J Anaesth. 2016;63:731–6.

    Article  Google Scholar 

  21. Colen DL, Bank J, McAndrew C, Levin LS. Reconstruction for all: the case for pediatric hand transplantation. Submitted 2016.

  22. Hull CW. Apparatus for production of three-dimensional objects by stereolithography; US 4575330 A. 1986. https://www.google.nl/patents/US4575330.

  23. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2010;2:014110.

    Article  Google Scholar 

  24. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368:2043–5.

    Article  Google Scholar 

  25. 3D Printing in Transplantation: while 3D printing has made significant advances in recent years, the reality of whole organ generation remains a long way off. Am J Transplant. 2016;16:1339-40.

  26. Kusaka M, Sugimoto M, Fukami N, et al. Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transplant Proc. 2015;47:596–9.

    Article  Google Scholar 

  27. Sodian R, Weber S, Markert M, et al. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg. 2008;136:1098–9.

    Article  Google Scholar 

  28. Baimakhanov Z, Soyama A, Takatsuki M, et al. Preoperative simulation with a 3-dimensional printed solid model for one-step reconstruction of multiple hepatic veins during living donor liver transplantation. Liver Transpl. 2015;21:266–8.

    Article  Google Scholar 

  29. Dorafshar AH, Brazio PS, Mundinger GS, Mohan R, Brown EN, Rodriguez ED. Found in space: computer-assisted orthognathic alignment of a total face allograft in six degrees of freedom. J Oral Maxillofac Surg. 2014;72:1788–1800.

    Article  Google Scholar 

  30. Galvez JA, Gralewski K, McAndrew C, Rehman MA, Chang B, Levin LS. Assessment and planning for a pediatric bilateral hand transplant using 3-dimensional modeling: case report. J Hand Surg Am. 2016;41:341–3.

    Article  Google Scholar 

  31. Pulos N, Shaked A, Abt PL, et al. Hand allotransplantation: operating room set-up and team coordination. Tech Hand Up Extrem Surg. 2015;19:68–72.

    Article  Google Scholar 

  32. Dorafshar AH, Bojovic B, Christy MR, et al. Total face, double jaw, and tongue transplantation: an evolutionary concept. Plast Reconstr Surg. 2013;131:241–51.

    Article  Google Scholar 

  33. Sink J, Hamlar D, Kademani D, Khariwala SS. Computer-aided stereolithography for presurgical planning in fibula free tissue reconstruction of the mandible. J Reconstr Microsurg. 2012;28:395–403.

    Google Scholar 

  34. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4:9–18.

    Article  Google Scholar 

  35. Khan FA, Lipman JD, Pearle AD, Boland PJ, Healey JH. Surgical technique: computer-generated custom jigs improve accuracy of wide resection of bone tumors. Clin Orthop Relat Res. 2013;471:2007–16.

    Article  Google Scholar 

  36. Hirsch DL, Garfein ES, Christensen AM, Weimer KA, Saddeh PB, Levine JP. Use of computer-aided design and computer-aided manufacturing to produce orthognathically ideal surgical outcomes: a paradigm shift in head and neck reconstruction. J Oral Maxillofac Surg. 2009;67:2115–22.

    Article  Google Scholar 

  37. Storelli DA, Bauer AS, Lattanza LL, McCarroll HR Jr. The use of computer-aided design and 3-dimensional models in the treatment of forearm malunions in children. Tech Hand Up Extrem Surg 2015;19:23–6.

    Article  Google Scholar 

  38. Roser SM, Ramachandra S, Blair H, et al. The accuracy of virtual surgical planning in free fibula mandibular reconstruction: comparison of planned and final results. J Oral Maxillofac Surg. 2010;68:2824–32.

    Article  Google Scholar 

  39. Azari KK, Imbriglia JE, Goitz RJ, et al. Technical aspects of the recipient operation in hand transplantation. J Reconstr Microsurg. 2012;28:27–34.

    Article  Google Scholar 

  40. Landin L, Cavadas PC, Garcia-Cosmes P, Thione A, Vera-Sempere F. Perioperative ischemic injury and fibrotic degeneration of muscle in a forearm allograft: functional follow-up at 32 months post transplantation. Ann Plast Surg 2011;66:202–9.

    Article  Google Scholar 

  41. Delmas PD. Osteoporosis in patients with organ transplants: a neglected problem. Lancet. 2001;357:325–6.

    Article  Google Scholar 

  42. Maalouf NM, Shane E. Osteoporosis after solid organ transplantation. J Clin Endocrinol Metab. 2005;90:2456–65.

    Article  Google Scholar 

  43. Matsunaga T, Shigetomi M, Hashimoto T, et al. Effects of bisphosphonate treatment on bone repair under immunosuppression using cyclosporine A in adult rats. Osteoporos Int. 2007;18:1531–40.

    Article  Google Scholar 

  44. Higgins JP, Shores JT, Katz RD, Lee WP, Wolock BS. Forearm transplantation osteosynthesis using modified ulnar shortening osteotomy technique. J Hand Surg Am 2014;39:134–42.

    Article  Google Scholar 

  45. Mendenhall SD, Schmucker RW, De la Garza M, Levin LS, Neumeister MW. Osteosynthesis in forearm transplantation using a novel ulnar-shortening osteotomy system for simultaneous both bone fixation. Submitted 2016.

  46. Vargas CD, Aballea A, Rodrigues EC, et al. Re-emergence of hand-muscle representations in human motor cortex after hand allograft. Proc Natl Acad Sci USA 2009;106:7197–202.

    Article  Google Scholar 

  47. Shores JT, Imbriglia JE, Lee WP. The current state of hand transplantation. J Hand Surg Am. 2011;36:1862–7.

    Article  Google Scholar 

  48. Brenneis C, Loscher WN, Egger KE, et al. Cortical motor activation patterns following hand transplantation and replantation. J Hand Surg Br. 2005;30:530–3.

    Article  Google Scholar 

  49. Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A. Mapping phantom movement representations in the motor cortex of amputees. Brain 2006;129:2202–10.

    Article  Google Scholar 

  50. Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;21:3609–18.

    Google Scholar 

  51. Piza-Katzer H, Brenneis C, Loscher WN, et al. Cortical motor activation patterns following hand transplantation and replantation. Acta Neurochir Suppl. 2007;100:113–5.

    Article  Google Scholar 

  52. Dubernard JM, Petruzzo P, Lanzetta M, et al. Functional results of the first human double-hand transplantation. Ann Surg. 2003;238:128–36.

    Google Scholar 

  53. Hernandez-Castillo CR, Aguilar-Castaneda E, Iglesias M, Fernandez-Ruiz J. Motor and sensory cortical reorganization after bilateral forearm transplantation: four-year follow-up fMRI case study. Magn Reson Imaging 2016;34:541–4.

    Article  Google Scholar 

  54. Frey SH, Bogdanov S, Smith JC, Watrous S, Breidenbach WC. Chronically deafferented sensory cortex recovers a grossly typical organization after allogenic hand transplantation. Curr Biol. 2008;18:1530–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Momeni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, A., Chang, B. & Levin, L.S. Technology and vascularized composite allotransplantation (VCA)—lessons learned from the first bilateral pediatric hand transplant. J Mater Sci: Mater Med 27, 161 (2016). https://doi.org/10.1007/s10856-016-5771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5771-9

Keywords

Navigation