Advertisement

Pure titanium particle loaded nanocomposites: study on the polymer/filler interface and hMSC biocompatibility

  • Roberto Avolio
  • Marietta D’Albore
  • Vincenzo Guarino
  • Gennaro Gentile
  • Maria Cristina Cocca
  • Stefania Zeppetelli
  • Maria Emanuela Errico
  • Maurizio Avella
  • Luigi Ambrosio
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization

Abstract

The integration of inorganic nanoparticles into polymer matrices allows for the modification of physical properties as well as the implementation of new features for unexplored application fields. Here, we propose the study of a new metal/polymer nanocomposite fabricated by dispersing pure Ti nanoparticles into a poly(methylmetacrilate) matrix via solvent casting process, to investigate its potential use as new biomaterial for biomedical applications. We demonstrated that Ti nanoparticles embedded in the poly(methylmetacrilate) matrix can act as reinforcing agent, not negatively influencing the biological response of human mesenchymal stem cell in terms of cytotoxicity and cell viability. As a function of relative amount and surface treatment, Ti nanoparticles may enhance mechanical strength of the composite—ranging from 31.1 ± 2.5 to 43.7 ± 0.7 MPa—also contributing to biological response in terms of adhesion and proliferation mechanisms. In particular, for 1 wt% Ti, treated Ti nanoparticles improve cell materials recognition, as confirmed by higher cell spreading-quantified in terms of cell area via image analysis—locally promoting stronger interactions at cell matrix interface. At this stage, these preliminary results suggest a promising use of pure Ti nanoparticles as filler in polymer composites for biomedical applications.

Notes

Acknowledgments

This study was financially supported by BEYOND NANO(PON03 0362). Electron Microscopy was supported by the Transmission and Scanning Electron Microscopy Labs (LAMEST) of the National Research Council. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Oliveira MB, Luzab GM, Mano JF. A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. J Mater Chem B. 2014;2:5627–38.CrossRefGoogle Scholar
  2. 2.
    Whitesides GM. The ‘right’ size in nanobiotechnology. Nat Biotechnol. 2003;21:1161–5.CrossRefGoogle Scholar
  3. 3.
    Paula DR, Robesonb LM. Polymer nanotechnology: Nanocomposites. Polymer. 2008;49:3187–204.CrossRefGoogle Scholar
  4. 4.
    Shayan M, Jung Y, Huang PS, Moradi M, Plakseychuk AY, Lee JK, Shankar R, Chun Y. Improved osteoblast response to UV-irradiated PMMA/TiO2 nanocomposites with controllable wettability. J Mater Sci Mater Med. 2014;25:2721–27.CrossRefGoogle Scholar
  5. 5.
    Guarino V, Urciuolo F, Alvarez-Perez MA, Mele B, Netti PA, Ambrosio L. Osteogenic differentiation and mineralization in fibre-reinforced tubular scaffolds: theoretical study and experimental evidences. J R Soc Interface. 2012;9:2201–12.CrossRefGoogle Scholar
  6. 6.
    Guarino V, Scaglione S, Sandri M, Alvarez-Perez MA, Tampieri A, Quarto R, Ambrosio L. MgCHA particles dispersion in porous PCL scaffolds: in vitro mineralization and in vivo bone formation. J Tissue Eng Regen Med. 2014;8(4):291–303.CrossRefGoogle Scholar
  7. 7.
    D’Antò V, Raucci MG, Guarino V, Martina S, Valletta R, Ambrosio L. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration. J Tissue Eng Regen Med. 2016;10(2):E147–54.CrossRefGoogle Scholar
  8. 8.
    Gay S, Arostegui S, Lemaitre J. Preparation and characterization of dense nanohydroxyapatite/PLLA composites. Mater Sci Eng C. 2009;29:172–7.CrossRefGoogle Scholar
  9. 9.
    Liao SS, Cui FZ, Zhu Y. Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite: nHAC/PLA. J Bioact Compat Polym. 2004;19:117–30.CrossRefGoogle Scholar
  10. 10.
    Ruixin L, Dong L, Bin Z, Hao L, Xue L, Caihong S, Weihua S, Xiaoli Q, Yinghai Y, Weining A, Xizheng Z. A mechanical evaluation of micro-HA/CS composite scaffolds with interconnected spherical macropores. Biomed Eng Online. 2016;15:12 doi: 10.1186/s12938-015-0114-5.CrossRefGoogle Scholar
  11. 11.
    Xie L, Yu H, Yang W, Zhu Z, Yue L. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. J Biomater Sci Polym. 2016;27:505–28.CrossRefGoogle Scholar
  12. 12.
    Rong ZJ, Yang LJ, Cai BT, Zhu LX, Cao YL, Wu GF, Zhang ZJ. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment. J Mater Sci Mater Med. 2016;27:89. doi: 10.1007/s10856-016-5699-0.CrossRefGoogle Scholar
  13. 13.
    Guarino V, Veronesi F, Marrese M, Giavaresi G, Ronca A, Sandri M, Tampieri A, Fini M, Ambrosio L. Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds. Biomed Mater. 2016;11:015018.CrossRefGoogle Scholar
  14. 14.
    Guarino V, Raucci MG, Ambrosio L. Micro/nanotexturing and bioactivation strategies to design composite scaffolds and ECM-like analogues. Macromol Symp. 2013;331–332:65–70.CrossRefGoogle Scholar
  15. 15.
    Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules. 2011;12:1641–50.CrossRefGoogle Scholar
  16. 16.
    Costantini A, Luciani G, Annunziata G, Silvestri B, Branda F. Swelling properties and bioactivity of silica gel/pHEMA nanocomposites. Mater Sci Eng C. 2016;60:195–203.CrossRefGoogle Scholar
  17. 17.
    Li K, Sun H, Sui H, Zhang Y, Liang H, Wu X, Zhao Q. Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Adv. 2015;5:17541–9.CrossRefGoogle Scholar
  18. 18.
    Zhang FA, Lee DK, Pinnavaia TJ. PMMA/mesoporous silica nanocomposites: effect of framework structure and pore size on thermomechanical properties. Polym Chem. 2010;1:107–13.CrossRefGoogle Scholar
  19. 19.
    Qiu K, He C, Feng W, Wang W, Zhou X, Yin Z, Chen L, Wang H, Mo X. Doxorubicin-loaded electrospun poly(L-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. J Mater Chem B. 2013;1:4601–11.CrossRefGoogle Scholar
  20. 20.
    Song B, Wu C, Chang J. Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater. 2012;8(5):1901–7.CrossRefGoogle Scholar
  21. 21.
    Xu JK, Zhang FF, Sun JJ, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules. 2014;19:21506–28.CrossRefGoogle Scholar
  22. 22.
    Baghayeri M, Zare EN, Lakouraj MM. Novel superparamagnetic PFu@Fe3O4 conductive nanocomposite as a suitable host for hemoglobin immobilization. Sensor Actuat B Chem. 2014;202:1200–8.CrossRefGoogle Scholar
  23. 23.
    Meenach SA, Anderson AA, Suthar M, Anderson KW, Hilt JZ. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide. J Biomed Mater Res A. 2009;91A:903–9.CrossRefGoogle Scholar
  24. 24.
    Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffold. RSC Adv. 2014;4:51528–36.CrossRefGoogle Scholar
  25. 25.
    Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C. 2016;60:195–203.CrossRefGoogle Scholar
  26. 26.
    Cocca M, D’Orazio L. Novel silver/polyurethane nanocomposite by in situ reduction: effects of the silver nanoparticles on phase and viscoelastic behavior. J Polym Sci B. 2008;46(4):344–50.CrossRefGoogle Scholar
  27. 27.
    Cocca M, D’Orazio L, Gambacorta A, Romano I. Biocidal properties of a silver/poly(carbonate urethane) nanocomposite by in situ reduction. J Biomed Nanotechnol. 2012;8:500–7.CrossRefGoogle Scholar
  28. 28.
    Caseri W. Nanocomposites of polymers and metals or semiconductors: historical background and optical Properties. Macromol Rapid Commun. 2000;21:21705–22.CrossRefGoogle Scholar
  29. 29.
    Carotenuto G, Nicolais L. Synthesis and characterization of gold-based nanoscopic additives for polymers. Composites B. 2004;35:385–91.CrossRefGoogle Scholar
  30. 30.
    Luechinger NA, Loher S, Athanassiou EK, Grass RN, Stark WJ. Highly sensitive optical detection of humidity on polymer/metal nanoparticle hybrid films. Langmuir. 2007;23:3473–7.CrossRefGoogle Scholar
  31. 31.
    Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P. Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C. 2008;112:11758–66.CrossRefGoogle Scholar
  32. 32.
    Lee JY, Nagahata JLR, Horiuchi S. Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer. 2006;47:7970–79.CrossRefGoogle Scholar
  33. 33.
    Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, Murphy CJ, Abbott NL. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31:680–90.CrossRefGoogle Scholar
  34. 34.
    Katti K. Biomaterials in total joint replacement. Colloid Surf B. 2004;39:133–42.CrossRefGoogle Scholar
  35. 35.
    Avella M, Errico ME, Martuscelli M. Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process. Nano Lett. 2001;1:213–7.CrossRefGoogle Scholar
  36. 36.
    Avella M, Errico ME, Gentile G. PMMA based nanocomposites filled with modified CaCO3 nanoparticles. Macromol Symp. 2007;247:140–6.CrossRefGoogle Scholar
  37. 37.
    Avolio R, Gentile G, Avella M, Capitani D, Errico ME. Synthesis and characterization of poly(methylmethacrylate)/silica nanocomposites: study of the interphase by solid-state NMR and structure/properties relationships. J Polym Sci A. 2010;48:5618–29.CrossRefGoogle Scholar
  38. 38.
    De Nicola A, Avolio R, Della Monica F, Gentile G, Cocca M, Capacchione C, Errico ME, Milano G. Rational design of nanoparticle/monomer interfaces: a combined computational and experimental study of in situ polymerization of silica based nanocomposites. RSC Adv. 2015;5:71336–40.CrossRefGoogle Scholar
  39. 39.
    Elias Motaung T, Luyt AS, Bondioli F, Messori M, Saladino ML, Spinella A, Nasillo G, Caponetti E. PMMA–titania nanocomposites: properties and thermal degradation behavior. Polym Degrad Stab. 2012;97:1325–33.CrossRefGoogle Scholar
  40. 40.
    McClory C, McNally T, Baxendale M, Pötschke P, Blaud W, Ruetherd M. Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. Eur Polym J. 2010;46:854–68.CrossRefGoogle Scholar
  41. 41.
    Siddiqui MN, Redhwi HH, Vakalopoulou E, Tsagkalias I, Ioannidou MD, Achilias DS. Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur Polym J. 2015;72:256–69.CrossRefGoogle Scholar
  42. 42.
    Guarino V, Guaccio A, Netti PA, Ambrosio L. Image processing and fractal box counting: user-assisted method for multi-scale porous scaffold characterization. J Mater Sci Mater Med. 2010;12:3109–18.CrossRefGoogle Scholar
  43. 43.
    Variola F, Zalzal SF, Leduc A, Barbeau J, Nanci A. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties. Int J Nanomedicine. 2014;9:2319–25.CrossRefGoogle Scholar
  44. 44.
    Velten D, Biehl V, Aubertin F, Valeske B, Possart W, Breme J. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol–gel coating techniques and their characterization. J Biomed Mater Res. 2002;59:18–28.CrossRefGoogle Scholar
  45. 45.
    Rong MZ, Zhang MQ, Wang HB, Zeng HM. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization. Appl Surf Sci. 2002;1-4:76–93.CrossRefGoogle Scholar
  46. 46.
    Deka H, Karak N, Kalita RD, Buragohain AK. Bio-based thermostable, biodegradable and biocompatible hyperbranched polyurethane/Ag nanocomposites with antimicrobial activity. Polym Degrad Stab. 2010;95:1509–17.CrossRefGoogle Scholar
  47. 47.
    Ash BJ, Siegel RW, Schadler LS. Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites. Macromolecules. 2004;37:1358–69.CrossRefGoogle Scholar
  48. 48.
    Kopesky ET, McKinley GH, Cohen RE. Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer. 2006;47:299–309.CrossRefGoogle Scholar
  49. 49.
    Patra N, Barone AC, Salerno M. Solvent effects on the thermal and mechanical properties of poly(methyl methacrylate) casted from concentrated solutions. Adv Polym Technol. 2001;30:12–20.CrossRefGoogle Scholar
  50. 50.
    Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab. 2003;79:271–81.CrossRefGoogle Scholar
  51. 51.
    Laachachi A, Ferriol M, Cochez M, Ruch D, Lopez-Cuest J-M. The catalytic role of oxide in the thermooxidative degradation of poly(methyl methacrylate)–TiO2 nanocomposites. Polym Degrad Stab. 2008;93:1131–37.CrossRefGoogle Scholar
  52. 52.
    Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–320.CrossRefGoogle Scholar
  53. 53.
    Oldani C, Dominguez A. Titanium as a biomaterial for implants, recent advances in arthroplasty. In: Samo Fokter (editors) 2012. doi: 10.5772/27413.
  54. 54.
    Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev. 2010;62:305–15.CrossRefGoogle Scholar
  55. 55.
    Kevin W, Wu C-W, Yamauchi Y, Hong C-Y, Yang Y-H, Liang Y-H, Funatsu T, Tsunoda M. Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery. Chem Commun. 2011;47:5232–4.CrossRefGoogle Scholar
  56. 56.
    Papageorgiou G, Achilias D, Nianias N, Trikalitis P, Bikiaris D. Effect of the type of nano-filler on the crystallization and mechanical properties of syndiotactic polystyrene based nanocomposites. Thermochim Acta. 2013;565:82–94.CrossRefGoogle Scholar
  57. 57.
    He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular localization and cytotoxicity of spherical mesoporous silica nano-and microparticles. Small. 2009;5:2722–9.CrossRefGoogle Scholar
  58. 58.
    Tao Z, Morrow MP, Asefa T, Sharma KK, Duncan C, Anan A, Penefsky HS, Goodisman J, Souid A-K. Mesoporous silica nanoparticles inhibit cellular respiration. Nano Lett. 2008;8:1517–26.CrossRefGoogle Scholar
  59. 59.
    Indira K, Kamachi Mudali U, Rajendran N. Corrosion behavior of electrochemically assembled nanoporous titania for biomedical applications. Ceram Int. 2013;39:959–67.CrossRefGoogle Scholar
  60. 60.
    Layer NA, Al-Mobarak AA, Al-Swayih AA. Development of titanium surgery implants for improving osseointegration through formation of a titanium nanotube. Int J Electrochem Sci. 2014;9:32–45.Google Scholar
  61. 61.
    Wu C, Chen M, Zheng T, Yang X. Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy. Biomed Mater Eng. 2015;26:S155–64.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Roberto Avolio
    • 1
  • Marietta D’Albore
    • 2
  • Vincenzo Guarino
    • 2
  • Gennaro Gentile
    • 1
  • Maria Cristina Cocca
    • 1
  • Stefania Zeppetelli
    • 2
  • Maria Emanuela Errico
    • 1
  • Maurizio Avella
    • 1
  • Luigi Ambrosio
    • 2
    • 3
  1. 1.Institute for Polymers, Composites and Biomaterials, National Research Council of ItalyPozzuoliItaly
  2. 2.Institute for Polymers, Composites and Biomaterials, National Research Council of ItalyNaplesItaly
  3. 3.Department of Chemical Sciences & Materials TechnologyNational Research Council of ItalyRomeItaly

Personalised recommendations