Advertisement

Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance

  • Reyhaneh Neghabat Shirazi
  • Fawaz Aldabbagh
  • William Ronan
  • Andrea Erxleben
  • Yury Rochev
  • Peter McHugh
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization

Abstract

In this study, the effects of material thickness and processing method on the degradation rate and the changes in the mechanical properties of poly(lactic-co-glycolic acid) material during simulated physiological degradation were investigated. Two types of poly(lactic-co-glycolic acid) materials were considered: 0.12 mm solvent-cast films and 1 mm compression-moulded plates. The experimental results presented in this study were compared to the experimental results of Shirazi et al. (Acta Biomaterialia 10(11):4695–703, 2014) for 0.25 mm solvent-cast films. These experimental observations were used to validate the computational modelling predictions of Shirazi et al. (J Mech Behav Biomed Mater 54: 48–59, 2016) on critical diffusion length scale and also to refine the model parameters. The specific material processing methods considered here did not have a significant effect on the degradation rate and the changes in mechanical properties during degradation; however, they influenced the initial molecular weight and they determined the stiffness and hardness of the poly(lactic-co-glycolic acid) material. The experimental observations strongly supported the computational modelling predictions that showed no significant difference in the degradation rate and the changes in the elastic modulus of poly(lactic-co-glycolic acid) films for thicknesses larger than 100 μm.

Notes

Acknowledgments

Funding support was provided by the Structured PhD Programme in Biomedical Engineering and Regenerative Medicine (BMERM), funded under the Programme for Research in Third-Level Institutions (PRTLI) Cycle 5 and co-funded under the European Regional Development Fund (ERDF). The authors would like to thank Dr. Benjamin Chalmers (School of Chemistry, NUI Galway) for helping with GPC measurements and Dr. Eadaoin Timmins (NCBES, NUI Galway) for helping with AFM measurements. The authors would also like to thank Proxy Biomedical Ltd (Co. Galway, Ireland) for sample preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Shirazi RN, Aldabbagh F, Erxleben A, Rochev Y, McHugh P. Nanomechanical properties of poly(lactic-co-glycolic) acid film during degradation. Acta Biomaterialia 2014;10(11):4695–703. doi: 10.1016/j.actbio.2014.08.004.CrossRefGoogle Scholar
  2. 2.
    Shirazi RN, Ronan W, Rochev Y, McHugh P. Modelling the degradation and elastic properties of poly(lactic-co-glycolic acid) films and regular open-cell tissue engineering scaffolds. J Mech Behav Biomed Mater 2016;54:48–59. doi: 10.1016/j.jmbbm.2015.08.030.CrossRefGoogle Scholar
  3. 3.
    Manavitehrani I, Fathi A, Badr H, Daly S, Shirazi AN, Dehghani F. Biomedical applications of biodegradable polyesters. Polymers (20734360) 2016;8(1):1–32. doi: 10.3390/polym8010020.Google Scholar
  4. 4.
    O’Brien B, Zafar H, Ibrahim A, Zafar J, Sharif F. Coronary stent materials and coatings: a technology and performance update. Ann Biomed Eng 2016;44(2):523–35. doi: 10.1007/s10439-015-1380-x.CrossRefGoogle Scholar
  5. 5.
    Pamula E, Menaszek E. In vitro and in vivo degradation of poly(L-lactide-co-glycolide) films and scaffolds. J Mater Sci Mater Med 2008;19(5):2063–70. doi: 10.1007/s10856-007-3292-2.CrossRefGoogle Scholar
  6. 6.
    Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers. Biomaterials 1996;17(2):93–102. doi: 10.1016/0142-9612(96)85754-1.CrossRefGoogle Scholar
  7. 7.
    Sung H-J, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004;25(26):5735–42. doi: 10.1016/j.biomaterials.2004.01.066.CrossRefGoogle Scholar
  8. 8.
    Jonnalagadda S, Robinson DH. Effect of thickness and PEG addition on the hydrolytic degradation of PLLA. J Biomater Sci Polym Ed 2004;15(10):1317–26. doi: 10.1163/1568562041959982.CrossRefGoogle Scholar
  9. 9.
    Grizzi I, Garreau H, Li S, Vert M. Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 1995;16(4):305–11. doi: 10.1016/0142-9612(95)93258-f.CrossRefGoogle Scholar
  10. 10.
    Dunne M, Corrigan OI, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 2000;21(16):1659–68. doi: 10.1016/S0142-9612(00)00040-5.CrossRefGoogle Scholar
  11. 11.
    Grayson ACR, Cima MJ, Langer R. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 2005;26(14):2137–45. doi: 10.1016/j.biomaterials.2004.06.033.CrossRefGoogle Scholar
  12. 12.
    Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res 1999;46(2):236–44. doi:10.1002/(sici)1097-4636(199908)46:2<236::aid-jbm13>3.0.co;2-f.CrossRefGoogle Scholar
  13. 13.
    Ford Versypt AN, Pack DW, Braatz RD. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres — A review. J Control Rel 2013;165(1):29–37. doi: 10.1016/j.jconrel.2012.10.015.CrossRefGoogle Scholar
  14. 14.
    Chen Y, Zhou S, Li Q. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomaterialia 2011;7(3):1140–9. doi: 10.1016/j.actbio.2010.09.038.CrossRefGoogle Scholar
  15. 15.
    Wang Y, Pan J, Han X, Sinka C, Ding L. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 2008;29(23):3393–401. doi: 10.1016/j.biomaterials.2008.04.042.CrossRefGoogle Scholar
  16. 16.
    Sackett CK, Narasimhan B. Mathematical modeling of polymer erosion: consequences for drug delivery. Int J Pharm 2011;418(1):104–14. doi: 10.1016/j.ijpharm.2010.11.048.CrossRefGoogle Scholar
  17. 17.
    Boland EL, Shine R, Kelly N, Sweeney CA, McHugh PE. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann Biomed Eng 2016;44(2):341–56. doi: 10.1007/s10439-015-1413-5.CrossRefGoogle Scholar
  18. 18.
    Barbanti SH, Santos AR Jr, Zavaglia CA, Duek EA. Poly (ε-caprolactone) and poly (d, l-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression–particulate leaching method. J Mater Sci Mater Med 2011;22(10):2377–85.CrossRefGoogle Scholar
  19. 19.
    Rhim J-W, Mohanty AK, Singh SP, Ng PKW. Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci 2006;101(6):3736–42. doi: 10.1002/app.23403.CrossRefGoogle Scholar
  20. 20.
    Shirazi RN, Rochev Y, McHugh P. Nanoindentation of solvent-cast and compression-moulded poly(lactic-co-glycolic acid) to determine elastic modulus and hardness. Polym Testing 2016;50:111–8. doi: 10.1016/j.polymertesting.2016.01.009.CrossRefGoogle Scholar
  21. 21.
    ASTM:F1635-11. In vitro degradation testing of hydrolytically degradable polymer resins and fabricated forms for surgical implants. doi: 10.1520/F1635-11., www.astm.org.; 2011.
  22. 22.
    Kohn JC, Ebenstein DM. Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels. J Mech Behav Biomed Mater 2013;20(0):316–26. doi: 10.1016/j.jmbbm.2013.02.002.CrossRefGoogle Scholar
  23. 23.
    Oliver WC, Pharr GM. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7(6):1564–80.CrossRefGoogle Scholar
  24. 24.
    Geng K, Yang F, Druffel T, Grulke EA. Nanoindentation behavior of ultrathin polymeric films. Polymer 2005;46(25):11768–72. doi: 10.1016/j.polymer.2005.08.096.CrossRefGoogle Scholar
  25. 25.
    Vey E, Roger C, Meehan L, Booth J, Claybourn M, Miller AF, et al. Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polym Degrad Stabil 2008;93(10):1869–76. doi: 10.1016/j.polymdegradstab.2008.07.018.CrossRefGoogle Scholar
  26. 26.
    Chen L, Apte RN, Cohen S. Characterization of PLGA microspheres for the controlled delivery of IL-1α for tumor immunotherapy. J Control Rel 1997;43(2–3):261–72. doi: 10.1016/S0168-3659(96)01496-4.CrossRefGoogle Scholar
  27. 27.
    Gogolewski S, Mainil-Varlet P. Effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides: 2. Poly(l/d-lactide) and poly(l/dl-lactide). Biomaterials 1997;18(3):251–5. doi: 10.1016/S0142-9612(96)00132-9.CrossRefGoogle Scholar
  28. 28.
    Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stabil 2010;95(2):116–25. doi: 10.1016/j.polymdegradstab.2009.11.045.CrossRefGoogle Scholar
  29. 29.
    Weir NA, Buchanan FJ, Orr JF, Farrar DF, Boyd A. Processing, annealing and sterilisation of poly-l-lactide. Biomaterials 2004;25(18):3939–49. doi: 10.1016/j.biomaterials.2003.10.076.CrossRefGoogle Scholar
  30. 30.
    Fouad H, Mourad AHI, Barton DC. Effect of pre-heat treatment on the static and dynamic thermo-mechanical properties of ultra-high molecular weight polyethylene. Polym Testing 2005;24(5):549–56. doi: 10.1016/j.polymertesting.2005.02.007.CrossRefGoogle Scholar
  31. 31.
    ISO E. 14577-4. Metallic materials–instrumented indentation test for hardness and materials parameters Part.4 2007.Google Scholar
  32. 32.
    Cui W, Li X, Zhou S, Weng J. Degradation patterns and surface wettability of electrospun fibrous mats. Polym Degrad Stabil 2008;93(3):731–8. doi: 10.1016/j.polymdegradstab.2007.12.002.CrossRefGoogle Scholar
  33. 33.
    Miller C, Shanks H, Witt A, Rutkowski G, Mallapragada S. Oriented Schwann cell growth on micropatterned biodegradable polymer substrates. Biomaterials 2001;22(11):1263–9. doi: 10.1016/S0142-9612(00)00278-7.CrossRefGoogle Scholar
  34. 34.
    Chye Joachim Loo S, Ooi CP, Hong Elyna Wee S, Chiang Freddy Boey Y. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials 2005;26(16):2827–33. doi: 10.1016/j.biomaterials.2004.08.031.CrossRefGoogle Scholar
  35. 35.
    Pantani R, Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stabil 2013;98(5):1089–96. doi: 10.1016/j.polymdegradstab.2013.01.005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Reyhaneh Neghabat Shirazi
    • 1
  • Fawaz Aldabbagh
    • 2
  • William Ronan
    • 3
  • Andrea Erxleben
    • 2
  • Yury Rochev
    • 2
    • 4
  • Peter McHugh
    • 1
  1. 1.Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and InformaticsNational University of Ireland GalwayGalwayIreland
  2. 2.School of ChemistryNational University of Ireland GalwayGalwayIreland
  3. 3.Mechanical Engineering, College of Engineering and InformaticsNational University of Ireland GalwayGalwayIreland
  4. 4.National Centre for Biomedical Engineering Science (NCBES)National University of Ireland GalwayGalwayIreland

Personalised recommendations