Fabrication mechanism of nanostructured HA/TNTs biomedical coatings: an improvement in nanomechanical and in vitro biological responses

  • Shahab Ahmadi
  • Zohreh Riahi
  • Aylar Eslami
  • S.K. Sadrnezhaad
Engineering and Nano-engineering Approaches for Medical Devices Original Research
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices


In this paper, a mechanism for fabrication of nanostructured hydroxyapatite coating on TiO2 nanotubes is presented. Also, the physical, biological, and nanomechanical properties of the anodized Ti6Al4V alloy consisting TiO2 nanotubes, electrodeposited hydroxyapatite, and the hydroxyapatite/TiO2 nanotubes double layer coating on Ti6Al4V alloy implants are compared. Mean cell viability of the samples being 84.63 % for uncoated plate, 91.53 % for electrodeposited hydroxyapatite, and 94.98 % for hydroxyapatite/TiO2 nanotubes coated sample were in the acceptable range. Merely anodized prototype had the highest biocompatibility of 110 % with respect to the control sample. Bonding strength of hydroxyapatite deposit to the substrate increased from 12 ± 2 MPa to 25.4 ± 2 MPa using intermediate TiO2 nanotubes layer. Hardness and elastic modulus of the anodized surface were 956 MPa and 64.7 GPa, respectively. The corresponding values for hydroxyapatite deposit were approximately measured 44.3 MPa and 0.66 GPa, respectively, while the average obtained values for hardness (159.3 MPa) and elastic modulus (2.25 GPa) of the hydroxyapatite/TiO2 nanotubes double coating improved more than 30 % of the pure hydroxyapatite deposit. Friction coefficient (ξ) of the anodized surface was 0.32 ± 0.02. The calculated friction coefficient enhanced from 0.65 ± 0.04 for sole hydroxyapatite layer to the 0.46 ± 0.02 for hydroxyapatite/TiO2 nanotubes due to presence of nanotubular TiO2 intermediate layer.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ahmadi Sh, Sadrnezhaad SK. A novel method for production of foamy core@compact shell Ti6Al4V bone-like composite. J Alloys Compd. 2016;656:416–22.CrossRefGoogle Scholar
  2. 2.
    Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. J Miner Metals Mater Soc. 2008;60:46–9.CrossRefGoogle Scholar
  3. 3.
    Naddaf Dezfuli S, Sadrnezhaad SK, Shokrgozar MA, Bonakdar S. Fabrication of biocompatible titanium scaffolds using space holder technique. J Mater Sci: Mater Med. 2012;23(10):2483–8.Google Scholar
  4. 4.
    Ratner BD. A perspective on titanium biocompatibility. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine: materials science, surface science, engineering, biological responses and medical applications. Springer; 2001. pp. 1–10.Google Scholar
  5. 5.
    Thomsen MP, Eriksson AS, Olsson R, Bjursten LM, Branemark PI, Ericson LE. Morphological studies on titanium implant inserted in rabbit knee-joints. Adv Biomater. 1987;7:87–92.Google Scholar
  6. 6.
    Bajgai MP, Parajuli DC, Park SJ, Chu KH, Kang HS, Kim HY. In vitro bioactivity of sol-gel-derived hydroxyapatite particulate nan0ofiber modified titanium, J Mater Sci: Mater Med. 2010;21(2):685–94.Google Scholar
  7. 7.
    Hong MH, Lee DH, Kim KM, Lee YK. Improved bonding strength between TiO2 film and Ti substrate by microarc oxidation, Surf Interface Anal. 2010;42(6–7):492–6.Google Scholar
  8. 8.
    Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78(1):97–103.CrossRefGoogle Scholar
  9. 9.
    Das K, Bose S, Bandyopadhyay A. TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction. J Biomed Mater Res A. 2009;90(1):225–37.CrossRefGoogle Scholar
  10. 10.
    Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28(21):3188–97.CrossRefGoogle Scholar
  11. 11.
    Yang L, Amodio SJ, Barrere-deGroot FYF, Everts V, Van Blitterswijk CA, Habibovic P. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials. 2010;31:2976–89.CrossRefGoogle Scholar
  12. 12.
    Gopi D, Rajeswari D, Ramya S, Sekar M, Pramod R, Dwivedi J, Kavitha L, Ramaseshan R. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel. Appl Surf Sci. 2013;286:83–90.CrossRefGoogle Scholar
  13. 13.
    Mucalo, M. Hydroxyapatite (HAp) for Biomedical Applications, Technology & Engineering; Woodhead Publishing: Cambridge, UK, 2015.Google Scholar
  14. 14.
    Gopi D, Shinyjoy E, Kavitha L. Influence of ionic substitution in improving the biological property of carbon nanotubes reinforced hydroxyapatite composite coating on titanium for orthopedic applications. Ceram Int. 2014;41:5454–63.CrossRefGoogle Scholar
  15. 15.
    Ahmadi Sh, Mohammadi I, Sadrnezhaad SK. Hydroxyapatite based and anodic titania nanotube biocomposite coatings: Fabrication, characterization and electrochemical behavior. Surf Coat Tech. 2016;287:67–75.CrossRefGoogle Scholar
  16. 16.
    Macak JM, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta. 2005;50:3679–84.CrossRefGoogle Scholar
  17. 17.
    Tighineanu A, Ruff T, Albu SP, Hahn R, Schmuki P. Conductivity of TiO2 nanotubes: influence of annealing time and temperature. Chem Phys Lett. 2010;494:260–3.CrossRefGoogle Scholar
  18. 18.
    Ghicov A, Tsuchiya H, Macak JM, Schmuki P. Annealing effects on the photoresponse of TiO2 nanotubes. Phys Status Solidi A. 2006;203:R28–30.CrossRefGoogle Scholar
  19. 19.
    Pariente JL, Kim BS, Atala A. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res. 2001;55:33–9.CrossRefGoogle Scholar
  20. 20.
    Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.CrossRefGoogle Scholar
  21. 21.
    Eliaz N, Sridhar TM. Ellectrocrystallization of hydroxyapatite and its dependence on solution conditions. Cryst Growth Des. 2008;8:3965–77.CrossRefGoogle Scholar
  22. 22.
    Dreveta R, Benhayounea H, Worthama L, Potirona S, Dougladeb J, Laurent Maquina D. Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings. Mater Charact. 2010;61:786–95.CrossRefGoogle Scholar
  23. 23.
    Gopi D, Indira J, Kavitha L. A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel. Surf Coat Technol. 2012;206:2859–69.CrossRefGoogle Scholar
  24. 24.
    Kung KC, Chen JL, Liu YT, Lee TM. Fabrication and characterization of CaP-coated nanotube arrays. Mater Chem Phys. 2014;153:110–16.CrossRefGoogle Scholar
  25. 25.
    Kim SE, Lim JH, Lee SC, Nam SC, Kang HG, Choi J. Anodically nanostructured titanium oxides for implant applications. Electrochim Acta. 2008;53(14):4846–51.CrossRefGoogle Scholar
  26. 26.
    Cheng K, Weng W, Wang H, Zhang S. In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials. 2005;26(32):6288–95.CrossRefGoogle Scholar
  27. 27.
    Abaso D, Gongadze E, Perutková Š, Matschegewski C, Kralj-Iglič V, Beck U, Iglič A. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comput Methods Biomec Biomed Eng. 2011;14(05):469–82.CrossRefGoogle Scholar
  28. 28.
    Gongadze E, Kabaso D, Bauer S, Slivnik T, Schmuki P, Van Rienen U, Iglič A. Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomedicine. 2011;6:1801Google Scholar
  29. 29.
    Park J, Bauer S, Von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano letters. 2007;7(6):1686–91.CrossRefGoogle Scholar
  30. 30.
    Walboomers XF, Jansen JA. Cell and tissue behavior on micro-grooved surfaces. Odontology. 2001;89(1):0002–11.CrossRefGoogle Scholar
  31. 31.
    Funka WPR. Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs. 2005;180:81–95.CrossRefGoogle Scholar
  32. 32.
    Smeets R, Kolk A, Gerressen M, Driemel O, Maciejewski O, Hermanns-Sachweh B, Stein JM. A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation. Head Face Med. 2009;5(1):13CrossRefGoogle Scholar
  33. 33.
    Smith IO, Baumann MJ, McCabe LR. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. J Biomed Mater Res A. 2004;70(3):436–41.CrossRefGoogle Scholar
  34. 34.
    Zelko J, Iglič A, Kralj-Iglič V, Kumar PS. Effects of counterion size on the attraction between similarly charged surfaces. J Chem Phys. 2010;133(20):204901.Google Scholar
  35. 35.
    Heath MD, Henderson B, Perkin S. Ion-specific effects on the interaction between fibronectin and negatively charged mica surfaces. Langmuir. 2010;26(8):5304–08.CrossRefGoogle Scholar
  36. 36.
    Xu D, Baburaj K, Peterson CB, Xu Y. Model for the three‐dimensional structure of vitronectin: Predictions for the multi‐domain protein from threading and docking. Proteins. 2001;44(3):312–20.CrossRefGoogle Scholar
  37. 37.
    Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30(6):315–22.CrossRefGoogle Scholar
  38. 38.
    Portan DV, Kroustalli AA, Deligianni DD, Papanicolaou GC. On the biocompatibility between TiO2 nanotubes layer and human osteoblasts. J Biomed Mat Res A. 2012;100(10):2546–53.CrossRefGoogle Scholar
  39. 39.
    Breitwieser GE. Extracellular calcium as an integrator of tissue function. Int J Biochem Cell Biol. 2008;40(8):1467–80.CrossRefGoogle Scholar
  40. 40.
    Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, Caverzasio J. Enhanced expression of the inorganic phosphate transporter pit‐1 is involved in BMP‐2–induced matrix mineralization in osteoblast‐like cells. J Bone Miner Res. 2006;21(5):674–83.CrossRefGoogle Scholar
  41. 41.
    Shi Z, Huang X, Cai Y, Tang R, Yang D. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 2009;5(1):338–45.CrossRefGoogle Scholar
  42. 42.
    Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769–81.CrossRefGoogle Scholar
  43. 43.
    Qu J, Chehroudi B, Brunette DM. The use of micromachined surfaces to investigate the cell behavioural factors essential to osseointegration. Oral Dis. 1996;2(1):102–15.CrossRefGoogle Scholar
  44. 44.
    Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent. 2000;84(5):522–34.CrossRefGoogle Scholar
  45. 45.
    Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731–39.CrossRefGoogle Scholar
  46. 46.
    Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng. 2001;7(3):291–301.CrossRefGoogle Scholar
  47. 47.
    Kodama A, Bauer S, Komatsu A, Asoh H, Ono S, Schmuki P. Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater. 2009;5(6):2322–30.CrossRefGoogle Scholar
  48. 48.
    Shockey JS, Von Fraunhofer JA, Seligson D. A measurement of the coefficient of static friction of human long bones. Surf Technol. 1985;25:167–78.CrossRefGoogle Scholar
  49. 49.
    Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldestein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32:1005–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shahab Ahmadi
    • 1
  • Zohreh Riahi
    • 1
  • Aylar Eslami
    • 1
  • S.K. Sadrnezhaad
    • 1
  1. 1.Advanced Bionanomaterials Laboratory, Department of Materials science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations