Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo

Abstract

45S5-type bioactive glasses are a promising alternative to established substitutes for the treatment of bone defects. Because the three-dimensional (3D) structure of bone substitutes is crucial for bone ingrowth and formation, we evaluated the osteoinductive properties of different polymer coated 3D-45S5 bioactive glass (BG) scaffolds seeded with human mesenchymal stem cells (hMSC) in vivo. BG scaffolds coated with gelatin, cross-linked gelatin, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) were seeded with hMSC prior to implantation into severe combined immunodeficiency mice. Newly formed bone was evaluated with histomorphometry and micro-computed tomography. Bone formation was detectable in all groups, whereas the gelatin-coated BG scaffolds showed the best results and should be considered in further studies.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Moghaddam A, Zietzschmann S, Bruckner T, Schmidmaier G. Treatment of atrophic tibia non-unions according to ‘diamond concept’: results of one- and two-step treatment. Injury. 2015;46(Suppl 4):S39–50. doi:10.1016/S0020-1383(15)30017-6.

    Article  Google Scholar 

  2. 2.

    Miska M, Findeisen S, Tanner M, Biglari B, Studier-Fischer S, Grutzner PA, et al. Treatment of nonunions in fractures of the humeral shaft according to the diamond concept. Bone Joint J B. 2016;98(1):81–7. doi:10.1302/0301-620X.98B1.35682.

    Article  Google Scholar 

  3. 3.

    Westhauser F, Zimmermann G, Moghaddam S, Bruckner T, Schmidmaier G, Biglari B, et al. Reaming in treatment of non-unions in long bones: cytokine expression course as a tool for evaluation of non-union therapy. Arch Orthop Trauma Surg. 2015;135:1107–16.

    Article  Google Scholar 

  4. 4.

    Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury. 2011;42(Suppl 2):S77–81. doi:10.1016/j.injury.2011.06.014.

    Article  Google Scholar 

  5. 5.

    Ilharreborde B, Morel E, Fitoussi F, Presedo A, Souchet P, Pennecot GF, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop. 2008;28(3):347–51. doi:10.1097/BPO.0b013e318168d1d4.

    Article  Google Scholar 

  6. 6.

    Pernaa K, Koski I, Mattila K, Gullichsen E, Heikkila J, Aho AJ, et al. Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures—a prospective randomized 11-year follow-up. J Long Term Eff Med Implant. 2011;21(2):139–48. doi:10.1615/JLongTermEffMedImplants.v21.i2.40.

    Article  Google Scholar 

  7. 7.

    Hu S, Chang J, Liu M, Ning C. Study on antibacterial effect of 45S5 Bioglass. J Mater Sci Mater Med. 2009;20(1):281–6. doi:10.1007/s10856-008-3564-5.

    Article  Google Scholar 

  8. 8.

    Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757–74. doi:10.1016/j.biomaterials.2011.01.004.

    Article  Google Scholar 

  9. 9.

    Dapunt U, Spranger O, Gantz S, Burckhardt I, Zimmermann S, Schmidmaier G, et al. Are atrophic long-bone nonunions associated with low-grade infections? Ther Clin Risk Manag. 2015;11:1843–52. doi:10.2147/TCRM.S91532.

    Article  Google Scholar 

  10. 10.

    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25. doi:10.1016/j.biomaterials.2005.11.025.

    Article  Google Scholar 

  11. 11.

    El-Gendy R, Yang XB, Newby PJ, Boccaccini AR, Kirkham J. Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass(R) based scaffolds in vitro and in vivo. Tissue Eng Part A. 2013;19(5–6):707–15. doi:10.1089/ten.TEA.2012.0112.

    Article  Google Scholar 

  12. 12.

    Arkudas A, Balzer A, Buehrer G, Arnold I, Hoppe A, Detsch R, et al. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng Part C. 2013;19(6):479–86. doi:10.1089/ten.TEC.2012.0572.

    Article  Google Scholar 

  13. 13.

    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91. doi:10.1016/j.biomaterials.2005.02.002.

    Article  Google Scholar 

  14. 14.

    Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, Pasini D. High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 2016;30:345–56. doi:10.1016/j.actbio.2015.10.048.

    Article  Google Scholar 

  15. 15.

    Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 2014;102(1):254–74. doi:10.1002/jbm.a.34690.

    Article  Google Scholar 

  16. 16.

    Westhauser F, Weis C, Hoellig M, Swing T, Schmidmaier G, Weber M-A, et al. Heidelberg-mCT-analyzer: a novel method for standardized microcomputed-tomography-guided evaluation of scaffold properties in bone and tissue research. R Soc Open Sci. 2015;2:150496. doi:10.1098/rsos.150496.

    Article  Google Scholar 

  17. 17.

    Kuehlfluck P, Moghaddam A, Helbig L, Child C, Wildemann B, Schmidmaier G. RIA fractions contain mesenchymal stroma cells with high osteogenic potency. Injury. 2015;46(S8):S2–11.

    Google Scholar 

  18. 18.

    Philippart A, Boccaccini AR, Fleck C, Schubert DW, Roether JA. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Expert Rev Med Devices. 2015;12(1):93–111. doi:10.1586/17434440.2015.958075.

    Article  Google Scholar 

  19. 19.

    World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. doi:10.1001/jama.2013.281053.

    Article  Google Scholar 

  20. 20.

    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–7. doi:10.1080/14653240600855905.

    Article  Google Scholar 

  21. 21.

    Li W, Nooeaid P, Roether JA, Schubert DW, Boccaccini AR. Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglass®-based glass–ceramic scaffolds for bone tissue engineering. J Eur Ceram Soc. 2014;34:505–14. doi:10.1016/j.jeurceramsoc.2013.08.032.

    Article  Google Scholar 

  22. 22.

    Li W, Wang H, Ding Y, Scheithauer EC, Goudouri O-M, Grunewald A, et al. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. J Mater Chem B. 2015;3:3367–78.

    Article  Google Scholar 

  23. 23.

    Brocher J, Janicki P, Voltz P, Seebach E, Neumann E, Mueller-Ladner U, et al. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Res. 2013;11(3):1393–406. doi:10.1016/j.scr.2013.07.008.

    Article  Google Scholar 

  24. 24.

    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86. doi:10.1002/jbmr.141.

    Article  Google Scholar 

  25. 25.

    Chang B, Song W, Han T, Yan J, Li F, Zhao L, et al. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater. 2016;. doi:10.1016/j.actbio.2016.01.022.

    Google Scholar 

Download references

Acknowledgments

The authors thank Tyler Swing for proofreading, Tom Bruckner for the support according the statistical analysis, and Birgit Frey for histomorphometric processing. This study was financed by the research grant of the Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arash Moghaddam.

Additional information

Fabian Westhauser and Christian Weis have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westhauser, F., Weis, C., Prokscha, M. et al. Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo. J Mater Sci: Mater Med 27, 119 (2016). https://doi.org/10.1007/s10856-016-5732-3

Download citation

Keywords

  • Bone Formation
  • Bioactive Glass
  • PHBV
  • Human Mesenchymal Stem Cell
  • Severe Combine Immunodeficiency