Skip to main content
Log in

Simvastatin-doped pre-mixed calcium phosphate cement inhibits osteoclast differentiation and resorption

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Simvastatin, a cholesterol lowering drug, has been shown to have positive effects on fracture healing and bone regeneration based on its dual effect; bone anabolic and anti-resorptive. In this study the focus has been on the anti-resorptive effect of the drug and its impact on the degradation of acidic calcium phosphate cement. The drug was added to the pre-mixed acidic cement in three different doses (0.1, 0.25 and 0.5 mg/g cement) and the release was measured. Furthermore the effect of the loaded cements on osteoclast differentiation and resorption was evaluated by TRAP activity, number of multinucleated cells, gene expression and calcium ion concentration in vitro using murine bone marrow macrophages. The simvastatin did not affect the cell proliferation while it clearly inhibited osteoclastic differentiation at all three doses as shown by TRAP staining, TRAP activity and gene expression. Consistent with these results, simvastatin also impaired resorption of cements by osteoclasts as indicated by reduced calcium ion concentrations. In conclusion, our findings suggest that simvastatin-doped pre-mixed acidic calcium phosphate cement inhibits the osteoclastic mediated resorption of the cement thus slowing down the degradation rate. In addition with simvastatin’s bone anabolic effect it makes the cement-drug combination a promising bone graft material, especially useful for sites with compromised bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(Supplement 4(0)):D37–47.

    Article  Google Scholar 

  2. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8. doi:10.1126/science.289.5484.1504.

    Article  Google Scholar 

  3. Mistry A, Mikos A. Tissue engineering strategies for bone regeneration. In: Yannas I, editor. Regenerative medicine II. Advances in biochemical engineering. Berlin: Springer; 2005. p. 1–22.

    Google Scholar 

  4. Grossardt C, Ewald A, Grover LM, Barralet JE, Gbureck U. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteclastic cells. Tissue Eng Part A. 2010;16(12):3687–95. doi:10.1089/ten.tea.2010.0281.

    Article  Google Scholar 

  5. Montazerolghaem M, Karlsson Ott M, Engqvist H, Melhus H, Rasmusson AJ. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts. Mater Sci Eng C. 2015;52:212–8. doi:10.1016/j.msec.2015.03.038.

    Article  Google Scholar 

  6. Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012;8(2):474–87. doi:10.1016/j.actbio.2011.08.005.

    Article  Google Scholar 

  7. Yamashita M, Otsuka F, Mukai T, Yamanaka R, Otani H, Matsumoto Y, et al. Simvastatin inhibits osteoclast differentiation induced by bone morphogenetic protein-2 and RANKL through regulating MAPK, AKT and Src signaling. Regul Peptides. 2010;162(1–3):99–108. doi:10.1016/j.regpep.2010.03.003.

    Article  Google Scholar 

  8. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9. doi:10.1126/science.286.5446.1946.

    Article  Google Scholar 

  9. Wang JW, Xu SW, Yang DS, Lv RK. Locally applied simvastatin promotes fracture healing in ovariectomized rat. Osteoporos Int. 2007;18(12):1641–50. doi:10.1007/s00198-007-0412-2.

    Article  Google Scholar 

  10. Skoglund B, Aspenberg P. Locally applied Simvastatin improves fracture healing in mice. BMC Musculoskeletal Disorders. 2007;8(1):98.

    Article  Google Scholar 

  11. Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280(3):874–7. doi:10.1006/bbrc.2000.4232.

    Article  Google Scholar 

  12. Fukui T, Ii M, Shoji T, Matsumoto T, Mifune Y, Kawakami Y, et al. Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. J Bone Miner Res. 2012;27(5):1118–31. doi:10.1002/jbmr.1558.

    Article  Google Scholar 

  13. Aberg J, Brisby H, Henriksson HB, Lindahl A, Thomsen P, Engqvist H. Premixed acidic calcium phosphate cement: characterization of strength and microstructure. J Biomed Mater Res B Appl Biomater. 2010;93B(2):436–41. doi:10.1002/jbm.b.31600.

    Article  Google Scholar 

  14. Takagi S, Chow LC, Hirayama S, Sugawara A. Premixed calcium–phosphate cement pastes. J Biomed Mater Res B Appl Biomater. 2003;67B(2):689–96. doi:10.1002/jbm.b.10065.

    Article  Google Scholar 

  15. Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J Am Coll Cardiol. 1999;33(1):234–41. doi:10.1016/s0735-1097(98)00514-2.

    Article  Google Scholar 

  16. Takeshita S, Kaji K, Kudo A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res. 2000;15(8):1477–88. doi:10.1359/jbmr.2000.15.8.1477.

    Article  Google Scholar 

  17. Granholm S, Lundberg P, Lerner U. Calcitonin inhibits osteoclast fromation in mouse haematopoetic cells independently of transcriptional regulation by receptor activator of NF-kappaB and c-Fms. J Endocrinol. 2007;195(3):415–27.

    Article  Google Scholar 

  18. Quinn JM, Elliott J, Gillespie MT, Martin TJ. A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology. 1998;139(10):4424–7. doi:10.1210/endo.139.10.6331.

    Article  Google Scholar 

  19. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    Article  Google Scholar 

  20. Ek-Rylander B, Barkhem T, Ljusberg J, Ohman L, Andersson K, Andersson G. Comparative studies of rat recombinant purple acid phosphatase and bone tartrate-resistant acid phosphatase. Biochem J. 1997;321(2):305–11.

    Article  Google Scholar 

  21. Ayukawa Y, Yasukawa E, Moriyama Y, Ogino Y, Wada H, Atsuta I, et al. Local application of statin promotes bone repair through the suppression of osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;107(3):336–42. doi:10.1016/j.tripleo.2008.07.013.

    Article  Google Scholar 

  22. Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai S. Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implant Res. 2009;20(3):280–7. doi:10.1111/j.1600-0501.2008.01639.x.

    Article  Google Scholar 

  23. Tanigo T, Takaoka R, Tabata Y. Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. J Controll Release. 2010;143(2):201–6. doi:10.1016/j.jconrel.2009.12.027.

    Article  Google Scholar 

  24. Montazerolghaem M, Engqvist H, Karlsson Ott M. Sustained release of simvastatin from premixed injectable calcium phosphate cement. J Biomed Mater Res Part A. 2014;102(2):340–7. doi:10.1002/jbm.a.34702.

    Article  Google Scholar 

  25. Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol. 2004;228(1–2):79–102. doi:10.1016/j.mce.2003.06.002.

    Article  Google Scholar 

  26. Woo J-T, Kasai S, Stern PH, Nagai K. Compactin suppresses bone resorption by inhibiting the fusion of prefusion osteoclasts and disrupting the actin ring in osteoclasts. J Bone Miner Res. 2000;15(4):650–62. doi:10.1359/jbmr.2000.15.4.650.

    Article  Google Scholar 

  27. Aberg J, Henriksson HB, Engqvist H, Palmquist A, Lindahl A, Thomsen P, et al. In vitro and in vivo evaluation of an injectable premixed calcium phosphate cement; Cell viability and immunological response from rat. Int J Nano Biomater. 2011;3(3):203–21.

    Article  Google Scholar 

  28. Ginebra M-P, Traykova T, Planell JA. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials. 2006;27(10):2171–7. doi:10.1016/j.biomaterials.2005.11.023.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Montazerolghaem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazerolghaem, M., Rasmusson, A., Melhus, H. et al. Simvastatin-doped pre-mixed calcium phosphate cement inhibits osteoclast differentiation and resorption. J Mater Sci: Mater Med 27, 83 (2016). https://doi.org/10.1007/s10856-016-5692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5692-7

Keywords

Navigation