Skip to main content
Log in

Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent light

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this paper, the photocatalytic activity of Fe-TiO2 nanoparticles (NPs) under fluorescent light was studied using Escherichia coli and Staphylococcus aureus. Fe-TiO2 NPs were synthesized using a sol–gel method and characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflectance spectroscopy (UV–vis DRS) and transmission electron microscopy. The efficiency of photocatalytic inactivation towards E. coli was studied under different physicochemical parameters. The photocatalytic inactivation rate increased with increasing Fe content in TiO2 NPs and the highest inactivation was achieved for 3.0 mol% Fe-TiO2 NPs under fluorescent light. These results demonstrate that the presence of an optimum concentration of Fe in TiO2 matrix enhances the photocatalytic inactivation of TiO2 NPs under fluorescent light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amna T, Hassan MS, Barakat NA, Pandeya DR, Hong ST, Khil MS, Kim HY. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microbiol Biotechnol. 2012;93:743–51.

    Article  Google Scholar 

  2. Chawengkijwanich C, Hayata Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol. 2008;123:288–92.

    Article  Google Scholar 

  3. Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT Food Sci Technol. 2013;50:702–6.

    Article  Google Scholar 

  4. Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett. 1985;29:211–4.

    Article  Google Scholar 

  5. Chen F, Yang X, Wu Q. Antifungal capability of TiO2 coated film on moist wood. Build Environ. 2009;44:1088–93.

    Article  Google Scholar 

  6. Zan L, Fa W, Peng T, Gong Z. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. J Photochem Photobiol B. 2007;86:165–9.

    Article  Google Scholar 

  7. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods. 1999;28(1):1–50.

    Article  Google Scholar 

  8. Akhavan O, Azimirad R, Safa S, Larijani MM. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J Mater Chem. 2010;20:7386–92.

    Article  Google Scholar 

  9. Hoffmann MR, Martin ST, Choi W, Bahnemannt DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95:69–96.

    Article  Google Scholar 

  10. Zhao J, Yang X. Photocatalytic oxidation for indoor air purification: a literature review. Build Environ. 2003;38:645–54.

    Article  Google Scholar 

  11. Caballero L, Whitehead KA, Allen NS, Verran J. Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A. 2009;202:92–8.

    Article  Google Scholar 

  12. Swetha S, Singh MK, Minchitha KU, Balakrishna RG. Elucidation of cell killing mechanism by comparative analysis of photoreactions on different types of bacteria. Photochem Photobiol. 2012;88:414–22.

    Article  Google Scholar 

  13. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65:4094–8.

    Google Scholar 

  14. Liou JW, Chang HH. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp (Warsz). 2012;60:267–75.

    Article  Google Scholar 

  15. Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ. A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir. 2010;26:2805–10.

    Article  Google Scholar 

  16. Ohko Y, Hashimoto K, Fujishima A. Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J Phys Chem A. 1997;101:8057–62.

    Article  Google Scholar 

  17. Horie Y, David DA, Taya M, Tone S. Effects of light intensity and titanium dioxide concentration on photocatalytic sterilization rates of microbial cells. Ind Eng Chem Res. 1996;35(11):3920–6.

    Article  Google Scholar 

  18. Schwegmann H, Ruppert J, Frimmel FH. Influence of the pH-value on the photocatalytic disinfection of bacteria with TiO2-explanation by DLVO and XDLVO theory. Water Res. 2013;47:1503–11.

    Article  Google Scholar 

  19. Veréb G, Manczinger L, Bozsó G, Sienkiewicz A, Forró L, Mogyorósi K, Hernádia K, Dombi A. Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation. Appl Catal B. 2013;129:566–74.

    Article  Google Scholar 

  20. Rincón AG, Pulgarin C. Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection. Appl Catal B. 2004;51:283–302.

    Article  Google Scholar 

  21. Zhang Z, Wang CC, Zakaria R, Ying JY. Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998;102:10871–8.

    Article  Google Scholar 

  22. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V. Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci. 2010;352:68–74.

    Article  Google Scholar 

  23. Wang W, Shang Q, Zheng W, Yu H, Feng X, Wang Z, Zhang Y, Li G. A Novel near-infrared antibacterial material depending on the up-converting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder. J Phys Chem C. 2010;114(32):13663–9.

    Article  Google Scholar 

  24. Skorb EV, Antonouskaya LI, Belyasova NA, Shchukin DG, Möhwald H, Sviridov DV. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite. Appl Catal B. 2008;84:94–9.

    Article  Google Scholar 

  25. Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ. Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ. 2010;408:1755–8.

    Article  Google Scholar 

  26. Amna T, Hassan MS, Pandurangan M, Khil MS, Lee HK, Hwang IH. Characterization and potent bactericidal effect of cobalt doped titanium dioxide nanofibers. Ceram Int. 2013;39:3189–93.

    Article  Google Scholar 

  27. Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, Yu SH. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010;3:244–55.

    Article  Google Scholar 

  28. Sayilkan F, Asiltürk M, Kiraz N, Burunkaya E, Arpaç E, Sayilkan H. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate. J Hazard Mater. 2009;162:1309–16.

    Article  Google Scholar 

  29. Caballero L, Whitehead KA, Allen NS, Verran J. Photocatalytic inactivation of Escherichia coli using doped titanium dioxide under fluorescent irradiation. J Photochem Photobiol A. 2013;276:50–7.

    Article  Google Scholar 

  30. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–959.

    Article  Google Scholar 

  31. Delekar SD, Yadav HM, Achary SN, Meena SS, Pawar SH. Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. Appl Surf Sci. 2012;263:536–45.

    Article  Google Scholar 

  32. Yadav HM, Otari SV, Koli VB, Mali SS, Hong CK, Pawar SH, Delekar SD. Preparation and characterization of copper–doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol. 2014;280:32–8.

    Article  Google Scholar 

  33. Yalçın Y, Kılıç M, Çınar Z. Fe+3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Appl Catal B. 2010;99:469–77.

    Article  Google Scholar 

  34. Peng H, Li J, Li S-S, Xia JB. First-principles study of the electronic structures and magnetic properties of 3-d transition metal-doped anatase TiO2. J Phys Condens Matter. 2008;20:125207.

    Article  Google Scholar 

  35. Zhou M, Yu J, Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J Hazard Mater. 2006;137:1838–47.

    Article  Google Scholar 

  36. Jaimy KB, Safeena VP, Ghosh S, Hebalkar NY, Warrier KGK. Photocatalytic activity enhancement in doped titanium dioxide by crystal defects. Dalton Trans. 2012;41:4824–32.

    Article  Google Scholar 

  37. Choi J, Park H, Hoffmann MR. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C. 2010;114:783–92.

    Article  Google Scholar 

  38. Ibrahim SA, Sreekantan S. Effect of Fe incorporation on the photocatalytic activity of TiO2 by sol-gel method. Adv Mater Res. 1087;2015:218–22.

    Google Scholar 

  39. Ramli RM, Chong FK, Omar AA, Murugesan T. Performance of surfactant assisted synthesis of Fe/TiO2 on the photodegradation of di-isopropanolamine. CLEAN Soil, Air, Water. 2015;43:690–7.

    Article  Google Scholar 

  40. Yu J, Xiang Q, Zhou M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B. 2009;90:595–602.

    Article  Google Scholar 

  41. Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, Gartner M. TiO2 (Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films. 2003;433:186–90.

    Article  Google Scholar 

  42. Egerton TA, Kosa SA, Christensen PA. Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Phys Chem Chem Phys. 2006;8:398–406.

    Article  Google Scholar 

  43. McEwan PJ, Slominski A, Pawelek J. Animals under the sun: effects of ultraviolet radiation on mammalian skin. Clin Dermatol. 1998;16:503–15.

    Article  Google Scholar 

  44. Sliney DH. Optical radiation safety of medical light sources. Phys Med Biol. 1997;42:981–96.

    Article  Google Scholar 

  45. Cheng CL, Sun DS, Chu WC, Tseng YH, Ho HC, Wang JB, et al. The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci. 2009;16:7.

    Article  Google Scholar 

  46. Pal A, Pehkonen SO, Yu LE, Ray MB. Photocatalytic inactivation of gram-positive and gram-negative bacteria using fluorescent light. J Photochem Photobiol A. 2007;186:335–41.

    Article  Google Scholar 

  47. Cernea M, Secu M, Secu CE, Baibarac M, Vasile BS. Structural and thermoluminescence properties of undoped and Fe-doped-TiO2 nanopowders processed by sol–gel method. J Nanoparticle Res. 2010;13:77–85.

    Article  Google Scholar 

  48. Inoue Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ Sci. 2009;2:364–86.

    Article  Google Scholar 

  49. Zhu J, Chen F, Zhang J, Chen H, Anpo M. Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A. 2006;180:196–204.

    Article  Google Scholar 

  50. Abazović ND, Mirenghi L, Janković IA, Bibić N, Sojić DV, Abramović BF, Čomor MI. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions. Nanoscale Res Lett. 2009;4:518–25.

    Article  Google Scholar 

  51. Li L, Liu C, Liu Y. Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light. Mater Chem Phys. 2009;113:551–7.

    Article  Google Scholar 

  52. Wang Y, Zhang R, Li J, Li L, Lin S. First-principles study on transition metal-doped anatase TiO2. Nanoscale Res Lett. 2014;9:1–8.

    Article  Google Scholar 

  53. Wang B, Li Q, Wang W, Li Y, Zhai J. Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl Surf Sci. 2011;257:3473–9.

    Article  Google Scholar 

  54. Yadav HM, Otari SV, Bohara RA, Mali SS, Pawar SH, Delekar SD. Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. J Photochem Photobiol A. 2014;294:130–6.

    Article  Google Scholar 

  55. Bekbölet M. Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of E. coli. Water Sci Technol. 1997;35:95–100.

    Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by a Grant (14CTAP-C077607-01) from Infrastructure and transportation technology promotion research program funded by Ministry of Land, Infrastructure, and Transport of the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Sik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, H.M., Kolekar, T.V., Pawar, S.H. et al. Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent light. J Mater Sci: Mater Med 27, 57 (2016). https://doi.org/10.1007/s10856-016-5675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5675-8

Keywords

Navigation