Skip to main content

Advertisement

Log in

Elastomeric enriched biodegradable polyurethane sponges for critical bone defects: a successful case study reducing donor site morbidity

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone substitutes have been a critical issue as the natural source can seldom provide enough bone to support full healing. No bone substitute complies with all necessary functions and characteristics that an autograft does. Polyurethane sponges have been used as a surgical alternative to cancellous bone grafts for critical bone defect donor sites. Critical bone defects were created on the tibial tuberosity and iliac crest using an ovine model. In group I (control-untreated), no bone regeneration was observed in any animal. In group II (defects left empty but covered with a microporous polymeric membrane), the new bone bridged the top ends in all animals. In groups III and IV, bone defects were implanted with polyurethane scaffolds modified with biologically active compounds, and bone regeneration was more efficient than in group II. In groups III and IV there were higher values of bone regeneration specific parameters used for evaluation (P < 0.05) although the comparison between these groups was not possible. The results obtained in this study suggest that biodegradable polyurethane substitutes modified with biologically active substances may offer an alternative to bone graft, reducing donor site morbidity associated with autogenous cancellous bone harvesting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Faour O, Dimitriou R, Cousins CA, Giannoudis PV. The use of bone graft substitutes in large cancellous voids: any specific needs? Injury. 2011;42(S2):S87–90.

    Article  Google Scholar 

  2. Blockhuis TJ, Chris Arts JJ. Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths. Injury. 2011;42(S4):S26–9.

    Article  Google Scholar 

  3. Saito N, Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials. 2003;24(13):2287–93.

    Article  Google Scholar 

  4. Gogolewski S, Gorna K. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res, Part A. 2007;80(1):94–101.

    Article  Google Scholar 

  5. Kroeze RJ, Helder MN, Govaert LE, Smit TH. Biodegradable polymers in bone tissue engineering. Materials. 2009;2(3):833–56.

    Article  Google Scholar 

  6. Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–24.

    Article  Google Scholar 

  7. Razak SIA, Fadzliana N, Sharif A, Aizan W, Rahman WAWA. Biodegradable polymers and their bone applications: a review. Int J Basic Appl Sci. 2012;12(1):31–49.

    Google Scholar 

  8. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5744–94.

    Article  Google Scholar 

  9. Hannink G, Arts CJJ. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011;42(4):22–5.

    Article  Google Scholar 

  10. Gogolewski S, Gorna K. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res A. 2007;80(1):94–101.

    Article  Google Scholar 

  11. Sartori S, Chiono V, Tonda-Turo C, Mattu C, Ciardelli G. Biomimetic polyurethanes in nano and regenerative medicine. J Mater Chem B. 2014;2:5128–44.

    Article  Google Scholar 

  12. Spaans CJ, Belgraver VW, Rienstra O, de Groot JH, Veth RP, Pennings AJ. Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials. 2000;21(23):2453–60.

    Article  Google Scholar 

  13. Gisselfält K, Edberg B, Flodin P. Synthesis and properties of degradable poly(urethaneurea)s to be used for ligament reconstructions. Biomacromolecules. 2002;3(5):951–8.

    Article  Google Scholar 

  14. Kavlock KD, Pechar TW, Hollinger JO, Guelcher SA, Goldstein AS. Synthesis and characterization of segmented poly(esterurethane urea) elastomers for bone tissue engineering. Acta Biomater. 2007;3(4):475–84.

    Article  Google Scholar 

  15. Thomas V, Kumari TV, Jayabalan M. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly (urethane urea) for blood contact applications. Biomacromolecules. 2001;2(2):588–96.

    Article  Google Scholar 

  16. Gogolewski S; Rahn B; Wieling R. Bone regeneration in critical-size segmental diaphyseal defects implanted with bioresorbable polylactide bone substitute. Transactions. In: Proceedings of 27th Society for Biomaterials 27th Annual Meeting, Saint Paul, MN, USA, 2001; 24: p 572.

  17. Gogolewski S, Gorna K, Turner S. Regeneration of bicortical defects in iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes. J Biomed Mater earch Part A. 2006;77(4):802–10.

    Article  Google Scholar 

  18. Gorna K, Gogolewski S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res, Part A. 2006;79(1):128–38.

    Article  Google Scholar 

  19. Gogolewski S, Gorna K, Zaczynska E, Czarny A. Structure-property relations and cytotoxicity of isosorbide-based biodegradable polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res, Part A. 2008;85(2):456–65.

    Article  Google Scholar 

  20. Lee CR, Grad S, Gorna K, Gogolewski K, Goessl A, Alini M. Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis. Tissue Eng. 2005;11:1562–73.

    Article  Google Scholar 

  21. Guelcher S. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B. 2008;14(1):3–17.

    Article  Google Scholar 

  22. Schreader K, Bayer I, Milner D, Loth E, Jasiuk I. A polyurethane-based nanocomposite biocompatible bone adhesive. J Appl Polym Sci. 2013;127(6):4974–82.

    Article  Google Scholar 

  23. Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE. Polyurethane-based drug delivery systems. Int J Pharm. 2013;450(1–2):145–62.

    Article  Google Scholar 

  24. Woźniak P, Bil M, Ryszkowska K, Wychowański P, et al. Candidate bone-tissue-engineered product based on human-bone-derived cells and polyurethane scaffold. Acta Biomater. 2010;6(7):2484–93.

    Article  Google Scholar 

  25. Potes JC, Reis JC, Silva FC, Relvas C, Cabrita AS, Simões JA. The Sheep as an animal model in orthopaedic research. Exp Pathol Health Sci. 2008;2(1):29–32.

    Google Scholar 

  26. Gorna K, Gogolewski S, Novel Biodegradable Polyurethanes for Medical Applications. In: Synthetic bioresorbable polymers for implants. ASTM STP 1396, Agrawal CM, Parr JE, Lin ST, Eds., ASTM, West Conshohocken, PA, 39–57, 2000.

  27. Gorna K, Polowinski S, Gogolewski S. Synthesis and characterization of biodegradable poly(-caprolactone urethanes). I. The effect of the polyol molecular weight, catalyst and the chain extender on the molecular and physical characteristics. J Polym Sci Part A. 2002;40(1):156–70.

    Article  Google Scholar 

  28. Gorna K, Gogolewski S. In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on -caprolactone and Pluronics® with various hydrophilicities. Polym Degrad Stab. 2002;75(1):113–22.

    Article  Google Scholar 

  29. Gorna K, Gogolewski S. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(-caprolactone) - poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res. 2002;60(4):592–606.

    Article  Google Scholar 

  30. Gorna K, Gogolewski S. Preparation, degradation and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res, Part A. 2003;67A(3):813–27.

    Article  Google Scholar 

  31. Schlickewei C, Verrier S, Lippross S, Pearce S, Alini M, Gogolewski S. Interaction of sheep bone marrow stromal cells with biodegradable polyurethane bone substitutes. Macromol Symp. 2007;253(1):162–71.

    Article  Google Scholar 

  32. Gogolewski S, Biocompatible, biodegradable polyurethane materials with controlled hydrophobic to hydrophilic ratio, US Patent 8,460,378 B2.

  33. Gugala Z, Gogolewski S. Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma. 1999;13(3):187–95.

    Article  Google Scholar 

  34. An YH, Bell TD. Experimental design, evaluation methods, data analysis and research ethics. In: An YH, Friedman RJ, editors. Animal models in orthopaedic research. Boca Raton: CRC Press; 1999. p. 15–37.

    Google Scholar 

  35. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.

    Google Scholar 

  36. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. Eur J Trauma. 2006;32(2):114–24.

    Article  Google Scholar 

  37. Rahn BA. Intra vital staining techniques. In: von Recum AF, editor. Handbook of biomaterials evaluation. 2nd ed. Philadelphia: Taylor & Francis; 1999. p. 727–42.

    Google Scholar 

  38. Coelho, PJV. Contribuição para o estudo da regeneração óssea mandibular consecutiva a perdas de substância – Tese de Doutoramento em Biomateriais. 2003. Faculdade de Medicina Dentária – Universidade de Lisboa. Lisboa. 268 pp.

  39. Zedda M, Lepore G, Manca P, Chisu V, Farina V. Comparative Bone Histology of Adult Horses (Equus caballus) and Cows (Bos taurus). Anat Histol Embryol. 2008;37(6):442–5.

    Article  Google Scholar 

  40. Tosta M, Cortes AR, Corrêa L, Pinto Ddos S Jr, Tumenas I, Katchburian E. Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. Oral Implants Res. 2013;24(8):866–70.

    Article  Google Scholar 

  41. Bloebaum RD, Willie BM, Mitchell BS, Hofmann AA. Relationship between bone ingrowth, mineral apposition rate, and osteoblast activity. J Biomed Mater Res A. 2007;81(2):505–14.

    Article  Google Scholar 

  42. Thorwarth M, Wehrhan F, Srour S, Schultze-Mosgau S, Felszeghy E, Bader RD, Schlegel KA. Evaluation of substitutes for bone: comparison of microradiographic and histologial assessments. Br J Oral Maxillofac Surg. 2007;45(1):41–7.

    Article  Google Scholar 

  43. Gogolewski S, Pineda L, Büsing CM. Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process? Biomaterials. 2000;21(24):2513–20.

    Article  Google Scholar 

  44. Silbernagel JT, Kennedy SC, Johnson AL, Pijanowski GJ, Ehrhart N, Schaeffer D. Validation of canine cancellous and cortical polyurethane foam bone models. Vet and Comp Orthop Traumatol. 2002;15(4):200–4.

    Google Scholar 

  45. Jones A, Arns CH, Sheppard AP, Hutmacher DW, Milhorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28(15):2491–504.

    Article  Google Scholar 

  46. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26(6):581–9.

    Article  Google Scholar 

  47. Gugala Z, Gogolewski S. In vitro growth and activity of primary chondrocytes on a resorbable polylactide three-dimensional scaffold. J Biomed Mater Res. 2000;49(2):183–91.

    Article  Google Scholar 

  48. Gugala Z, Gogolewski S. Protein adsorption, attachment, growth and activity of primary rat osteoblasts on polylactide membranes with defined surface characteristics. Biomaterials. 2004;25(12):2341–51.

    Article  Google Scholar 

  49. Gugala Z, Gogolewski S. Differentiation, growth and activity of rat bone marrow stromal cells on resorbable poly(L/DL-lactide) membranes. Biomaterials. 2004;25(12):2299–307.

    Article  Google Scholar 

  50. Gugala Z, Gogolewski S. The in vitro growth and activity of sheep osteoblasts on three-dimensional scaffolds from poly(L/DL-lactide) 80/20%. J Biomed Mater Res, Part A. 2005;75(3):702–9.

    Article  Google Scholar 

  51. Ip WY, Gogolewski S. Clinical application of resorbable polymers in guided bone regeneration. Macromol Symp. 2007;253(1):139–46.

    Article  Google Scholar 

  52. Pineda LM, Büsing CM, Meinig RP, Gogolewski S. Bone regeneration with resorbable polymeric membranes. III. Effect of poly (L-lactide) membrane pore size on the bone healing process in large defects. J Biomed Mater Res. 1996;31:385–94.

    Article  Google Scholar 

  53. Guedes e Silva CC, König B Jr, Carbonari MJ, Yoshimoto M, Allegrini S Jr, Bressiani JC. Tissue response around silicon nitride implants in rabbits. J Biomed Mater Res, Part A. 2008;84(2):337–43.

    Article  Google Scholar 

  54. Hafeman AE, Li B, Yoshii T, Zienkiewicz K, Davidson JM, Guelcher SA. Injectable biodegradable polyurethane scaffolds with release of platelet-derived growth factor for tissue repair and regeneration. Pharm Res. 2008;25(10):2387–99.

    Article  Google Scholar 

  55. McBane JE, Ebadi D, Sharifpoor S, Labow RS, Santerre JP. Differentiation of monocytes on a degradable, polar, hydrophobic, ionic polyurethane: two-dimensional films vs. three-dimensional scaffolds. Acta Biomater. 2011;7(1):115–22.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank AO-ASIF for providing the needed consumables, namely India ink, calcein green and xylenol orange. We are grateful for the pertinent comments and fruitful discussion with all people involved. The participation of the Faculty of Medicine—University of Coimbra (Fernando Guerra), Oncology Portuguese Institute—IPO (Maria de Lurdes Orvalho), Faculty of Veterinary Medicine—University of Lisbon (António Ferreira e Sandra de Jesus) and Institute of Biomedical Technology—ITB (Isaura Geraldo) and Katarzyna Gorna is deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Lavrador.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest of any nature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrador, C., Mascarenhas, R., Coelho, P. et al. Elastomeric enriched biodegradable polyurethane sponges for critical bone defects: a successful case study reducing donor site morbidity. J Mater Sci: Mater Med 27, 61 (2016). https://doi.org/10.1007/s10856-016-5667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5667-8

Keywords

Navigation