Fabrication and characterization of gold nanoparticle-loaded TiO2 nanotube arrays for medical implants

  • Yu BaiEmail author
  • Yulong Bai
  • Cunyang Wang
  • Jingjun Gao
  • Wen Ma
Biomaterials Synthesis and Characterization Original Research
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization


Au nanoparticles (AuNPs) are successfully assembled on TiO2 nanotube (TN) arrays through electrochemical deposition technology to improve the surface characteristics of TN arrays as an implant material. The loading amount of AuNPs can be controlled by adjusting the deposition time of electrochemical deposition. The effect of the amount of the loaded AuNPs on surface roughness and surface energy is systematically investigated on the basis of various characterizations. Results show that the increase in the loading amount of AuNPs on the TN arrays can increase surface roughness and decrease surface energy. Potentiodynamic polarization tests indicate that AuNP-modified TNs possess a higher corrosion resistance than unmodified TNs. Corrosion resistance increases as the amount of the loaded AuNP increases. In vitro cell culture tests are performed on the basis of cell morphology observations and MTT assays. Osteoblast cell adhesion and proliferation ability on the AuNP-modified TN surface are greater than those on the unmodified TN surface. The sample fabricated at the deposition time of 90 s exhibits an optimum cell performance. This work can provide a new platform to develop the surface chemistry of TN arrays and to fabricate titanium-based implant materials to enhance bioactivity.


Contact Angle Simulated Body Fluid Water Contact Angle Polar Component Dispersive Surface Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by “The Natural Science Foundation of Inner Mongolia Autonomous Region (2014BS0504)” funded by the Technology Department of Inner Mongolia Autonomous Region and by “The Scientific Research Foundation of the Education Ministry for Returned Chinese Scholars ([2013]693)” funded by the Department of International Exchange and Cooperation of the Ministry of Education. Additionally, the work was also funded by the Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences.


  1. 1.
    Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26(8):1269–77.CrossRefGoogle Scholar
  2. 2.
    Leon MJ, Evgeny L, Ruslan ZV, Javier S, Ilchat S, Nariman E, Sergey P, Andrey VS, Andrey K, Elazar G, Irene G, Eugen R, Sergey P, Luděk D, Marc S, Alexey S. Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R. 2014;81:1–19.CrossRefGoogle Scholar
  3. 3.
    Li Y, Lee IS, Cui FZ, Choi SH. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials. 2008;29(13):2025–32.CrossRefGoogle Scholar
  4. 4.
    Zhao T, Li Y, Zhao X, Chen H, Zhang T. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy. J Biomed Mater Res B. 2012;100(3):646–59.CrossRefGoogle Scholar
  5. 5.
    Nguyen TDT, Moon SH, Oh TJ, Park IS, Lee MH, Bae TS. The effect of APH treatment on surface bonding and osseointegration of Ti-6Al-7Nb implants: an in vitro and in vivo study. J Biomed Mater Res B. 2015;103(3):641–8.CrossRefGoogle Scholar
  6. 6.
    Kim SY, Kim YK, Park IS, Jin GC, Bae TS. LeeMH. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes. Appl Surf Sci. 2014;321:412–9.CrossRefGoogle Scholar
  7. 7.
    Gao L, Feng B, Wang J, Lu X, Liu D, Qu S, Weng J. Micro/nanostructural porous surface on titanium and bioactivity. J Biomed Mater Res B. 2009;89(2):335–41.CrossRefGoogle Scholar
  8. 8.
    Watari F, Yokoyama A, Omori M, Hirai T, Kondo H, Uo M, Kawasaki T. Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos Sci Technol. 2004;64(6):893–908.CrossRefGoogle Scholar
  9. 9.
    Indira K, KamachiMudali U, Rajendran N. In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications. Appl Surf Sci. 2014;316:264–75.CrossRefGoogle Scholar
  10. 10.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf Interface Anal. 1999;27(7):629–37.CrossRefGoogle Scholar
  11. 11.
    Hartmann P, Lee DK, Smarsly BM, Janek J. Mesoporous TiO2: comparison of classical sol–gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano. 2010;4(6):3147–54.CrossRefGoogle Scholar
  12. 12.
    Nian JN, Teng H. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B. 2006;110(9):4193–8.CrossRefGoogle Scholar
  13. 13.
    Rhee CH, Lee JS, Chung SH. Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. J Mater Res. 2005;20(11):3011–20.CrossRefGoogle Scholar
  14. 14.
    Sun L, Zhang S, Sun XW, He H. Effect of electric field strength on the length of anodized titania nanotube arrays. J Electroanal Chem. 2009;637(1):6–12.CrossRefGoogle Scholar
  15. 15.
    Feng XJ, Macak JM, Albu SP, Schmuki P. Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomater. 2008;4(2):318–23.CrossRefGoogle Scholar
  16. 16.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Small. 2007;3(11):1878–81.CrossRefGoogle Scholar
  17. 17.
    Shrestha NK, Macak JM, Schmidt-Stein F, Hahn R, Mierke CT, Fabry B, Schmuki P. Magnetically Guided Titania Nanotubes for Site-Selective Photocatalysis and Drug Release. Angew Chem Int Ed. 2009;48(5):969–72.CrossRefGoogle Scholar
  18. 18.
    Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J. Implant surface roughness affects osteoblast gene expression. J Dent Res. 2003;82(5):372–6.CrossRefGoogle Scholar
  19. 19.
    Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78:97–103.CrossRefGoogle Scholar
  20. 20.
    Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, Wu Z, Chu PK. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34(1):19–29.CrossRefGoogle Scholar
  21. 21.
    Indira K, KamachiMudali U, Rajendran N. In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications. Appl Surf Sci. 2014;316:264–75.CrossRefGoogle Scholar
  22. 22.
    Kawazoe N, Chen G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials. 2015;54:226–36.CrossRefGoogle Scholar
  23. 23.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–7.CrossRefGoogle Scholar
  24. 24.
    Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21:10644–54.CrossRefGoogle Scholar
  25. 25.
    Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5:2067–76.CrossRefGoogle Scholar
  26. 26.
    Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Murcia AB, Tikhov MS, Johnson BFG, Lambert RM. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature. 2008;454:981–3.CrossRefGoogle Scholar
  27. 27.
    Jun L, Bin L, Yi-Ming C, Dong LA, Pei-Sheng L. Development of titania nanotubes loaded with Au nanoparticles and their opto-electronic response under UV Light. J Inorg Mater. 2010;25:557–60.CrossRefGoogle Scholar
  28. 28.
    Neupane MP, Park IS, Bae TS, Yi HK, Uo M, Watari F, Lee MH. Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants. J Mater Chem. 2011;21(32):12078–82.CrossRefGoogle Scholar
  29. 29.
    Arronche L, Gordon K, Ryu D, Saponara VL, Cheng L. Investigation of galvanic corrosion between AISI 1018 carbon steel and CFRPs modified with multi-walled carbon nanotubes. J Mater Sci. 2013;48(3):1315–23.CrossRefGoogle Scholar
  30. 30.
    Bai Y, Park IS, Park HH, Lee MH, Bae TS, Duncan W, Swain M. The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surf Interface Anal. 2011;43(6):998–1005.CrossRefGoogle Scholar
  31. 31.
    Yang L, Luo S, Su F, Xiao Y, Chen Y, Cai Q. Carbon-nanotube-guiding oriented growth of gold shrubs on TiO2 nanotube arrays. J Phys Chem C. 2010;114(17):7694–9.CrossRefGoogle Scholar
  32. 32.
    He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, Zhu B, Chen W. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci. 2008;19(11):3465–72.Google Scholar
  33. 33.
    Oliveira CAGS, Stein MF, Saito E, Zanin H, Vieira LS, Raniero L, Trava-Airoldi VJ, Lobo AO, Marciano FR. Effect of gold oxide incorporation on electrochemical corrosion resistance of diamond-like carbon. Diamond Relat Mater. 2015;53:40–4.CrossRefGoogle Scholar
  34. 34.
    Ahmed RA, Fadl-allah SA, Bagoury NE, EI-Rab SMFG. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles. Appl Surf Sci. 2014;292:390–9.CrossRefGoogle Scholar
  35. 35.
    Song HJ, Park SH, Jeong SH, Park YJ. Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes. J Mater Process Technol. 2009;209(2):864–70.CrossRefGoogle Scholar
  36. 36.
    Leonor IB, Ito A, Onuma K, Kanzaki N, Reis RL. In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy. Biomaterials. 2003;24(4):579–85.CrossRefGoogle Scholar
  37. 37.
    Nyilas E, Morton WA, Cumming RD, Lederman DM, Chiu TH, Bayer RE. Effects of polymer surface molecular structure and force-field characteristics on blood interfacial phenomena. J Biomed Mater Res. 1977;11:51–68.CrossRefGoogle Scholar
  38. 38.
    Zhao T, Li Y, Zhao X, Chen H, Zhang T. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy. J Biomed Mater Res. 2012;100B:646–59.CrossRefGoogle Scholar
  39. 39.
    Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23:551–60.CrossRefGoogle Scholar
  40. 40.
    Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yu Bai
    • 1
    Email author
  • Yulong Bai
    • 1
  • Cunyang Wang
    • 1
  • Jingjun Gao
    • 1
  • Wen Ma
    • 1
  1. 1.School of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations