Advertisement

Protein, cell and bacterial response to atmospheric pressure plasma grafted hyaluronic acid on poly(methylmethacrylate)

  • Raechelle A. D’SaEmail author
  • Jog Raj
  • Peter J. Dickinson
  • M. Ann S. McMahon
  • David A. McDowell
  • Brian J. Meenan
Biocompatibility Studies Original Research
Part of the following topical collections:
  1. Biocompatibility Studies

Abstract

Hyaluronic acid (HA) has been immobilised on poly(methyl methacrylate) (PMMA) surfaces using a novel dielectric barrier discharge (DBD) plasma process for the purposes of repelling protein, cellular and bacterial adhesion in the context of improving the performance of ophthalmic devices. Grafting was achieved by the following steps: (1) treatment of the PMMA with a DBD plasma operating at atmospheric pressure, (2) amine functionalisation of the activated polymer surface by exposure to a 3-aminopropyltrimethoxysilane (APTMS) linker molecule and (3) reaction of HA with the surface bound amine. The mechanism and effectiveness of the grafting process was verified by surface analysis. XPS data indicates that the APTMS linker molecule binds to PMMA via the Si–O chemistry and has the required pendant amine moiety. The carboxylic acid moiety on HA then binds with this –NH2 group via standard carbodiimide chemistry. ToF-SIMS confirms the presence of a coherent HA layer the microstructure of which is verified by AFM. The plasma grafted HA coating surfaces showed a pronounced decrease in protein and cellular adhesion when tested with bovine serum albumin and human corneal epithelial cells, respectively. The ability of these coatings to resist bacterial adhesion was established using Staphylococcus aureus NTC8325. Interestingly, the coatings did not repel bacterial adhesion, indicating that the mechanism of adhesion of bacterial cells is different to that for the surface interactions of mammalian cells. It is proposed that this difference is a consequence of the specific HA conformation that occurs under the conditions employed here. Hence, it is apparent that the microstructure/architecture of the HA coatings is an important factor in fabricating surfaces intended to repel proteins, mammalian and bacterial cells.

Keywords

PMMA Hyaluronic Acid Dielectric Barrier Discharge Bacterial Adhesion Dielectric Barrier Discharge Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Professor Rachel Williams, University of Liverpool for the provision of the corneal epithelial cell line (Dr. K. Araki-Sasaki’s Kagoshima, Japan). Financial support from the Department for Employment and Learning, Northern Ireland under the Cross Border Research and Development Funding Programme - Strengthening the All-island Research Base for Functional Biomaterials (DEL-UU-05) is acknowledged.

References

  1. 1.
    Hicks CR, Fitton JH, Chirila TV, Crawford GJ, Constable IJ. Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol. 1997;42(2):175–89.CrossRefGoogle Scholar
  2. 2.
    Khan B, Dudenhoefer EJ, Dohlman CH. Keratoprosthesis: an update. Curr Opin Ophthalmol. 2001;12(4):282–7.CrossRefGoogle Scholar
  3. 3.
    Griffith M, Hakim M, Shimmura S, Watsky MA, Li F, Carlsson D, et al. Artificial human corneas: scaffolds for transplantation and host regeneration. Cornea. 2002;21:S54–61.CrossRefGoogle Scholar
  4. 4.
    Cardona H. Keratoprosthesis: acrylic optical cylinder with supporting intralamellar plate. Am J Ophthalmol. 1962;54(2):284–94.CrossRefGoogle Scholar
  5. 5.
    Lloyd AW, Faragher RG, Denyer SP. Ocular biomaterials and implants. Biomaterials. 2001;22(8):769–85.CrossRefGoogle Scholar
  6. 6.
    D’Sa RA, Burke GA, Meenan BJ. Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomater. 2010;6(7):2609–20.CrossRefGoogle Scholar
  7. 7.
    Brash JL. Exploiting the current paradigm of blood–material interactions for the rational design of blood-compatible materials. J Biomater Sci Polym Ed. 2000;11(11):1135–46.CrossRefGoogle Scholar
  8. 8.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.CrossRefGoogle Scholar
  9. 9.
    Anderson JM. Biological responses to materials. Ann Rev Mater Res. 2001;31(1):81–110.CrossRefGoogle Scholar
  10. 10.
    D’Sa RA, Burke GA, Meenan BJ. Lens epithelial cell response to atmospheric pressure plasma modified poly (methylmethacrylate) surfaces. J Mater Sci. 2010;21(5):1703–12.Google Scholar
  11. 11.
    Hosseini S, Ibrahim F, Djordjevic I, Koole LH. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst. 2014;139(12):2933–43.CrossRefGoogle Scholar
  12. 12.
    D’Sa RA, Raj J, McMahon M, McDowell DA, Burke GA, Meenan BJ. Atmospheric pressure plasma induced grafting of poly (ethylene glycol) onto silicone elastomers for controlling biological response. J Colloid Interface Sci. 2012;375(1):193–202.CrossRefGoogle Scholar
  13. 13.
    Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397–404.Google Scholar
  14. 14.
    Fraser JR, Laurent TC. Hyaluronan. In: Comper WD, editor. Extracellular matrix, vol. 2., Molecular Components and Interactions. Amsterdam: Harwood Academic Publishers; 1996. p. 141–99.Google Scholar
  15. 15.
    Laurent TC. Structure of hyaluronic acid. In: Balasz E, editor. Chemistry and molecular biology of the intracellular matrix. London: Academic Press; 1970. p. 709–32.Google Scholar
  16. 16.
    Toole BP. Proteoglycans and hyaluronan in morphogenesis and differentiation. In: Hay ED, editor. Cell biology of the extracellular matrix. New York: Plenum Press; 1991. p. 305.CrossRefGoogle Scholar
  17. 17.
    White CJ, Thomas CR, Byrne ME. Bringing comfort to the masses: a novel evaluation of comfort agent solution properties. Contact Lens Anterior Eye. 2014;37(2):81–91.CrossRefGoogle Scholar
  18. 18.
    López-García JS, García-Lozano I, Rivas L, Ramírez N, Raposo R, Méndez MT. Autologous serum eye drops diluted with sodium hyaluronate: clinical and experimental comparative study. Acta Ophthalmol. 2014;92(1):e22–9.CrossRefGoogle Scholar
  19. 19.
    Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes. J Biomed Mater Res A. 2006;79(3):650–64.CrossRefGoogle Scholar
  20. 20.
    Alauzun JG, Young S, D’Souza R, Liu L, Brook MA, Sheardown HD. Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials. 2010;31(13):3471–8.CrossRefGoogle Scholar
  21. 21.
    D’Sa RA, Dickinson PJ, Raj J, Pierscionek BK, Meenan BJ. Inhibition of lens epithelial cell growth via immobilisation of hyaluronic acid on atmospheric pressure plasma modified polystyrene. Soft Matter. 2011;7(2):608–17.CrossRefGoogle Scholar
  22. 22.
    Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mat. 2014;13:988–95.CrossRefGoogle Scholar
  23. 23.
    Ombelli M, Costello L, Postle C, Anantharaman V, Meng QC, Composto RJ, et al. Competitive protein adsorption on polysaccharide and hyaluronate modified surfaces. Biofouling. 2011;27(5):505–18.CrossRefGoogle Scholar
  24. 24.
    Yue Z, Liu X, Molino PJ, Wallace GG. Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid–collagen conjugate for neural interfacing. Biomaterials. 2011;32(21):4714–24.CrossRefGoogle Scholar
  25. 25.
    D’Sa RA, Meenan BJ. Chemical grafting of poly (ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing. Langmuir. 2009;26(3):1894–903.CrossRefGoogle Scholar
  26. 26.
    Liu C, Cui N, Brown NM, Meenan BJ. Effects of DBD plasma operating parameters on the polymer surface modification. Surf Coat Technol. 2004;185(2):311–20.CrossRefGoogle Scholar
  27. 27.
    Liu C, Brown NM, Meenan BJ. Dielectric barrier discharge (DBD) processing of PMMA surface: optimization of operational parameters. Surf Coat Technol. 2006;201(6):2341–50.CrossRefGoogle Scholar
  28. 28.
    Cui N-Y, Upadhyay DJ, Anderson CA, Meenan BJ, Brown NM. Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement. Appl Surf Sci. 2007;253(8):3865–71.CrossRefGoogle Scholar
  29. 29.
    Liu C, Brown NM, Meenan BJ. Uniformity analysis of dielectric barrier discharge (DBD) processed polyethylene terephthalate (PET) surface. Appl Surf Sci. 2006;252(6):2297–310.CrossRefGoogle Scholar
  30. 30.
    Chastain J. Handbook of X-ray photoelectron spectroscopy. Minnesota: Perkin-Elmer Corporation; 1992.Google Scholar
  31. 31.
    Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, et al. An SV40-immortalized human corneal epithelial cell line and its characterization. IOVS. 1995;36(3):614–21.Google Scholar
  32. 32.
    Tang H, Cao T, Wang A, Liang X, Salley SO, McAllister JP, et al. Effect of surface modification of siliconeon Staphylococcus epidermidis adhesion and colonization. J Biomed Mater Res A. 2007;80(4):885–94.CrossRefGoogle Scholar
  33. 33.
    Zhang L, Chen Y, Dong T. Studies on the adhesion between polytetra-fluoroethylene film and silanized glass foil. Surf Interface Anal. 2004;36(4):311–6.CrossRefGoogle Scholar
  34. 34.
    Allen GC, Sorbello F, Altavilla C, Castorina A, Ciliberto E. Macro-, micro-and nano-investigations on 3-aminopropyltrimethoxysilane self-assembly-monolayers. Thin Solid Films. 2005;483(1):306–11.CrossRefGoogle Scholar
  35. 35.
    Bierbaum K, Kinzler M, Wöll C, Grunze M, Hähner G, Heid S, et al. A near edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy study of the film properties of self-assembled monolayers of organosilanes on oxidized Si (100). Langmuir. 1995;11(2):512–8.CrossRefGoogle Scholar
  36. 36.
    Harder P, Bierbaum K, Woell C, Grunze M, Heid S, Effenberger F. Induced orientational order in long alkyl chain aminosilane molecules by preadsorbed octadecyltrichlorosilane on hydroxylated Si (100). Langmuir. 1997;13(3):445–54.CrossRefGoogle Scholar
  37. 37.
    Magalhaes JL, Moreira LM, Rodrigues-Filho UP, Giz MJ, Pereira-da-Silva MA, Landers R, et al. Surface chemistry of the iron tetraazamacrocycle on the aminopropyl-modified surface of oxidized n-Si (100) by AFM and XPS. Surf Interface Anal. 2002;33(4):293–8.CrossRefGoogle Scholar
  38. 38.
    Kristensen EM, Nederberg F, Rensmo H, Bowden T, Hilborn J, Siegbahn H. Photoelectron spectroscopy studies of the functionalization of a silicon surface with a phosphorylcholine-terminated polymer grafted onto (3-aminopropyl) trimethoxysilane. Langmuir. 2006;22(23):9651–7.CrossRefGoogle Scholar
  39. 39.
    Stile RA, Barber TA, Castner DG, Healy KE. Sequential robust design methodology and X-ray photoelectron spectroscopy to analyze the grafting of hyaluronic acid to glass substrates. J Biomed Mater Res. 2002;61(3):391–8.CrossRefGoogle Scholar
  40. 40.
    Pasqui D, Atrei A, Barbucci R. A novel strategy to obtain a hyaluronan monolayer on solid substrates. Biomacromolecules. 2007;8(11):3531–9.CrossRefGoogle Scholar
  41. 41.
    Wei J, Ravn DB, Gram L, Kingshott P. Stainless steel modified with poly (ethylene glycol) can prevent protein adsorption but not bacterial adhesion. Colloid Surf B. 2003;32(4):275–91.CrossRefGoogle Scholar
  42. 42.
    Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 1999;12(6):439–46.CrossRefGoogle Scholar
  43. 43.
    Huang BX, Kim H-Y, Dass C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrom. 2004;15(8):1237–47.CrossRefGoogle Scholar
  44. 44.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276(5317):1425–8.CrossRefGoogle Scholar
  45. 45.
    Habash M, Reid G. Microbial biofilms: their development and significance for medical device—related infections. J Clin Pharmacol. 1999;39(9):887–98.CrossRefGoogle Scholar
  46. 46.
    Statz AR, Barron AE, Messersmith PB. Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft Matter. 2008;4(1):131–9.CrossRefGoogle Scholar
  47. 47.
    Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, et al. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir. 2001;17(4):1225–33.CrossRefGoogle Scholar
  48. 48.
    Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, et al. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir. 2001;17(20):6336–43.CrossRefGoogle Scholar
  49. 49.
    Attili S, Borisov OV, Richter RP. Films of end-grafted hyaluronan are a prototype of a brush of a strongly charged, semiflexible polyelectrolyte with intrinsic excluded volume. Biomacromolecules. 2012;13(5):1466–77.CrossRefGoogle Scholar
  50. 50.
    De Kerchove AJ, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir. 2008;24(7):3392–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Raechelle A. D’Sa
    • 1
    • 2
    Email author
  • Jog Raj
    • 2
  • Peter J. Dickinson
    • 2
  • M. Ann S. McMahon
    • 3
  • David A. McDowell
    • 3
  • Brian J. Meenan
    • 2
  1. 1.Centre for Materials and StructuresUniversity of LiverpoolLiverpoolUK
  2. 2.Nanotechnology and Integrated Bio-Engineering Centre (NIBEC)University of UlsterNewtownabbeyUK
  3. 3.Biomedical Sciences Research Institute, School of Heath SciencesUniversity of UlsterNewtownabbeyUK

Personalised recommendations