Skip to main content
Log in

Enhanced cell-wall damage mediated, antibacterial activity of core–shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hybrid ZnO@Ag core–shell nanorods have been synthesized by a synthetic strategy based on seed mediated growth. Formation of core–shell nanostructures was confirmed by UV- diffused reflectance spectroscopy (UV-DRS), X-ray diffraction studies, field emission scanning electron microscopy and high resolution transmission electron microscopy. UV-DRS analysis of hybrid core–shell nanorods suggests the possibility of interfacial electron transfer between surface anchored Ag nanoclusters and ZnO nanorods. Successful decoration of Ag nanoclusters with an average diameter of ~7 ± 0.5 nm was observed forming the heterojunctions on the surface of the ZnO nanorods. An enhanced antibacterial property was observed for the ZnO@Ag core–shell nanorods against both Staphylococcus aureus and Pseudomonas aeruginosa lbacteria. The synergetic antibacterial activity of ZnO@Ag nanorods was found to be more prominent against Gram-positive bacteria than Gram-negative bacteria. The plausible reason for this enhanced antibacterial activity of the core–shell nanorods can be attributed to the physical damage caused by the interaction of the material with outer cell wall layer due to the production of reactive oxygen species by interfacial electron transfer between ZnO nanorods and plasmonic Ag nanoclusters. Overall, the ZnO@Ag core–shell nanorods were found to be promising materials that could be developed further as an effective antibacterial agent against wide range of microorganisms to control spreading and persistence of bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luo PG, Stutzenberger FJ, Allen I, Laskin SS, Geoffrey MG. Nanotechnology in the detection and control of microorganisms. Adv Appl Microbiol. 2008;63:145–81.

    Article  Google Scholar 

  2. Tam KH, Djurisic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films. 2008;516:6167–617.

    Article  Google Scholar 

  3. Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007;9:479–89.

    Article  Google Scholar 

  4. Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison between nano- and micro- scaled oxide particles. Environ Pollut. 2009;157:1619–25.

    Article  Google Scholar 

  5. Soderberg TA, Sunzel B, Holm S, Elmros T, Hallmans G, Sjoberg S. Antibacterial effect of zinc oxide in vitro. Scand J Plast Reconstr Surg Hand Surg. 1990;24:193–7.

    Article  Google Scholar 

  6. Söderberg T, Hallmans G, Ãgren M, Tengrup I, Banck G. The effects of an occlusive zinc medicated dressing on the bacterial flora in excised wounds in the rat. Infection. 1989;17:81–5.

    Article  Google Scholar 

  7. Nagarajan P, Rajagopalan V. Enhanced bioactivity of ZnO nanoparticlesl an antimicrobial study. Sci Technol Adv Mater. 2008;9:035004.

    Article  Google Scholar 

  8. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77:2325–31.

    Article  Google Scholar 

  9. Yamamoto O, Komatsu M, Sawai J, Nakagawa Z-E. Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci. 2004;15:847–51.

    Google Scholar 

  10. Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B. 2012;94:143–50.

    Article  Google Scholar 

  11. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6:5164–73.

    Article  Google Scholar 

  12. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater. 2009;19:842–52.

    Article  Google Scholar 

  13. Zhang W, Li Y, Niu J, Chen Y. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. 2013;29:4647–51.

    Article  Google Scholar 

  14. He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin J-J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc. 2014;136:750–7.

    Article  Google Scholar 

  15. Chaudhuri RG, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–433.

    Article  Google Scholar 

  16. Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem. 1995;99:16646–54.

    Article  Google Scholar 

  17. Udawatte N, Lee M, Kim J, Lee D. Well-defined Au/ZnO nanoparticle composites exhibiting enhanced photocatalytic activities. ACS Appl Mater Interfaces. 2011;3:4531–8.

    Article  Google Scholar 

  18. Xinping L, Shengli L, Miaotao Z, Wenlong Z, Chuanghong L. Evaluations of antibacterial activity and cytotoxicity on Ag nanoparticles. Rare Metal Mater Eng. 2011;40:209–14.

    Article  Google Scholar 

  19. Deng Z, Zhu H, Peng B, Chen H, Sun Y, Gang X, Jin P, Wang J. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces. 2012;4:5625–32.

    Article  Google Scholar 

  20. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–5.

    Article  Google Scholar 

  21. Siddhartha S, Tanmay B, Arnab R, Gajendra S, Ramachandrarao P, Debabrata D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:225103.

    Article  Google Scholar 

  22. Zhang Y, Gao X, Zhi L, Liu X, Jiang W, Sun Y, Yang J. The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J Inorg Biochem. 2014;130:74–83.

    Article  Google Scholar 

  23. Ghosh S, Goudar VS, Padmalekha KG, Bhat SV, Indi SS, Vasan HN. ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Adv. 2011;2:930–40.

    Article  Google Scholar 

  24. TrandafiloviÄ LV, Whiffen RK, DimitrijeviÄ-BrankoviÄ S, StoiljkoviÄ M, Luyt AS, DjokoviÄ V. ZnO/Ag hybrid nanocubes in alginate biopolymer: synthesis and properties. Chem Eng J. 2014;253:341–9.

    Article  Google Scholar 

  25. Weiwei L, Guosheng L, Shuyan G, Shantao X. Jianji W Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology. 2008;19:445711.

    Article  Google Scholar 

  26. Koga H, Kitaoka T, Wariishi H. In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J Mater Chem. 2009;19:2135–40.

    Article  Google Scholar 

  27. Li LH, Deng JC, Deng HR, Liu ZL, Li XL. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem Eng J. 2010;160:378–82.

    Article  Google Scholar 

  28. Motshekga SC, Ray SS, Onyango MS, Momba MNB. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater. 2013;262:439–46.

    Article  Google Scholar 

  29. Bazant P, Munster L, Machovsky M, Sedlak J, Pastorek M, Kozakova Z, Kuritka I. Wood flour modified by hierarchical Ag/ZnO as potential filler for wood “plastic composites with enhanced surface antibacterial performance. Ind Crops Prod. 2014;62:179–87.

    Article  Google Scholar 

  30. Tam KH, Djurišić AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films. 2008;516:6167–74.

    Article  Google Scholar 

  31. Zhang X, Thavasi V, Mhaisalkar SG, Ramakrishna S. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale. 2012;4:1707–16.

    Article  Google Scholar 

  32. Dinesh VP, Biji P, Ashok A, Dhara SK, Kamruddin M, Tyagi AK, Raj B. Plasmon- mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core-shell nanorods. RSC Adv. 2014;4:58930–40.

    Article  Google Scholar 

  33. Selvakumar R, Aravindh S, Ashok AM, Balachandran YL. A facile synthesis of silver nanoparticle with SERS and antimicrobial activity using Bacillus subtilis exopolysaccharides. J Exp Nanosci. 2014;9:1075–87.

    Article  Google Scholar 

  34. Selvakumar R, Suriyaraj SP, Jayavignesh V, Swaminathan K. Silver nanoparticle impregnated bio-based activated carbon with enhanced antimicrobial activity. Int J Nanosci. 2013;12:1350024.

    Article  Google Scholar 

  35. Li P, Wei Z, Wu T, Peng Q, Li Y. Au@ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc. 2011;133:5660–3.

    Article  Google Scholar 

  36. Linnert T, Mulvaney P, Henglein A, Weller H. Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis. J Am Chem Soc. 1990;112:4657–64.

    Article  Google Scholar 

  37. Alim KA, Fonoberov VA, Shamsa M, Balandin AA. Micro-Raman investigation of optical phonons in ZnO nanocrystals. J Appl Phys. 2005;97:124313.

    Article  Google Scholar 

  38. Zeferino R, Flores MB, Pal U. Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J Appl Phys. 2011;109:014308.

    Article  Google Scholar 

  39. Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS. Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis. J Phys Chem C. 2012;116:16182–90.

    Article  Google Scholar 

  40. Kang HS, Ahn BD, Kim JH, Kim GH, Lim SH, Chang HW, Lee SY. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl Phys Lett. 2006;88:202108.

    Article  Google Scholar 

  41. Wang X, Song J, Liu J, Wang ZL. Direct-current nanogenerator driven by ultrasonic waves. Science. 2007;316:102–5.

    Article  Google Scholar 

  42. Wang X, Kong X, Yu Y, Zhang H. Synthesis and characterization of water-soluble and bifunctional ZnO@Au nanocomposites. J Phys Chem C. 2007;111:3836–41.

    Article  Google Scholar 

  43. Kim BH, Kwon JW. Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates. Sci Rep. 2014.

  44. Han X, Dai J, Yu C, Wu Z, Chen C, Gao Y. Characterization of a-plane orientation ZnO film grown on GaN/Sapphire template by pulsed laser deposition. Appl Surf Sci. 2010;256:4682–6.

    Article  Google Scholar 

  45. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A. 2011;374:1–8.

    Article  Google Scholar 

  46. Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger M-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A. 2014;457:263–74.

    Article  Google Scholar 

  47. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3:643–6.

    Article  Google Scholar 

  48. Wang X, Yang F, Yang W, Yang X. A study on the antibacterial activity of one- dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem Commun. 2007;42:4419–21.

    Article  Google Scholar 

  49. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27:4020–8.

    Article  Google Scholar 

  50. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med. 2010;7:184–92.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the facilities and support provided by the management, PSG Sons and Charities, Coimbatore. The authors acknowledge Mrs. P. Dhanya, English Language and Literature, Al Zahra College for Women, Muscat, for proof reading and language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biji Pullithadathail.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnuvelu, D.V., Suriyaraj, S.P., Vijayaraghavan, T. et al. Enhanced cell-wall damage mediated, antibacterial activity of core–shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa . J Mater Sci: Mater Med 26, 204 (2015). https://doi.org/10.1007/s10856-015-5535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5535-y

Keywords

Navigation