Biofabricated constructs as tissue models: a short review


Biofabrication is currently able to provide reliable models for studying the development of cells and tissues into multiple environments. As the complexity of biofabricated constructs is becoming increasingly higher their ability to closely mimic native tissues and organs is also increasing. Various biofabrication technologies currently allow to precisely build cell/tissue constructs at multiple dimension ranges with great accuracy. Such technologies are also able to assemble together multiple types of cells and/or materials and generate constructs closely mimicking various types of tissues. Furthermore, the high degree of automation involved in these technologies enables the study of large arrays of testing conditions within increasingly smaller and automated devices both in vitro and in vivo. Despite not yet being able to generate constructs similar to complex tissues and organs, biofabrication is rapidly evolving in that direction. One major hurdle to be overcome in order for such level of complex detail to be achieved is the ability to generate complex vascular structures within biofabricated constructs. This review describes several of the most relevant technologies and methodologies currently utilized within biofabrication and provides as well a brief overview of their current and future potential applications.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Project on Emerging Nanotechnologies. Consumer Products Inventory. Retrieved October 2013, from

  2. 2.

    Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46(13):6900–14. doi:10.1021/es2037405.

    Article  Google Scholar 

  3. 3.

    Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295–350.

    Article  Google Scholar 

  4. 4.

    Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344(5):385–6. doi:10.1056/NEJM200102013440516.

    Article  Google Scholar 

  5. 5.

    Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G. Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther. 2008;10(6):R132. doi:10.1186/ar2549.

    Article  Google Scholar 

  6. 6.

    Eaglstein WH, Falanga V. Tissue engineering and the development of Apligraf, a human skin equivalent. Clin Ther. 1997;19(5):894–905.

    Article  Google Scholar 

  7. 7.

    Mason C. Automated tissue engineering: a major paradigm shift in health care. Med Device Technol. 2003;14(1):16–8.

    Google Scholar 

  8. 8.

    Costa PF, Martins A, Neves NM, Gomes ME, Reis RL. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. Tissue Eng B. 2014;. doi:10.1089/ten.TEB.2013.0751.

    Google Scholar 

  9. 9.

    Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication. 2009;1(2):022001. doi:10.1088/1758-5082/1/2/022001.

    Article  Google Scholar 

  10. 10.

    Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014;16:247–76. doi:10.1146/annurev-bioeng-071813-105155.

    Article  Google Scholar 

  11. 11.

    Pereira DA, Williams JA. Origin and evolution of high throughput screening. Br J Pharmacol. 2007;152(1):53–61. doi:10.1038/sj.bjp.0707373.

    Article  Google Scholar 

  12. 12.

    Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. A microfabricated fluorescence-activated cell sorter. Nat Biotechnol. 1999;17(11):1109–11. doi:10.1038/15095.

    Article  Google Scholar 

  13. 13.

    Segerink LI, Koster MJ, Sprenkels AJ, van den Berg A. A low-cost 2D fluorescence detection system for mum sized beads on-chip. Lab Chip. 2012;12(10):1780–3. doi:10.1039/c2lc21187d.

    Article  Google Scholar 

  14. 14.

    Yusof A, Keegan H, Spillane CD, Sheils OM, Martin CM, O’Leary JJ, et al. Inkjet-like printing of single-cells. Lab Chip. 2011;11(14):2447–54. doi:10.1039/c1lc20176j.

    Article  Google Scholar 

  15. 15.

    Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng. 2005;33(2):121–30.

    Article  Google Scholar 

  16. 16.

    Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6(2):139–47.

    Article  Google Scholar 

  17. 17.

    Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5(1):015013. doi:10.1088/1758-5082/5/1/015013.

    Article  Google Scholar 

  18. 18.

    Kurosawa H, Imamura T, Koike M, Sasaki K, Amano Y. A simple method for forming embryoid body from mouse embryonic stem cells. J Biosci Bioeng. 2003;96(4):409–11. doi:10.1016/S1389-1723(03)90148-4.

    Article  Google Scholar 

  19. 19.

    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12. doi:10.1126/science.1064829.

    Article  Google Scholar 

  20. 20.

    Sun T, Jackson S, Haycock JW, MacNeil S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 2006;122(3):372–81. doi:10.1016/j.jbiotec.2006.12.021.

    Article  Google Scholar 

  21. 21.

    Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 2005;15(5):405–12. doi:10.1016/j.semcancer.2005.06.009.

    Article  Google Scholar 

  22. 22.

    Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9(2):90–3. doi:10.1038/Nmat2619.

    Article  Google Scholar 

  23. 23.

    Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7. doi:10.1016/j.biomaterials.2009.06.034.

    Article  Google Scholar 

  24. 24.

    Schmidt-Nielsen K. Scaling in biology: the consequences of size. J Exp Zool. 1975;194(1):287–307. doi:10.1002/jez.1401940120.

    Article  Google Scholar 

  25. 25.

    Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6173–81. doi:10.1016/j.biomaterials.2010.04.045.

    Article  Google Scholar 

  26. 26.

    Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol. 2012;84(2):230–8. doi:10.1902/jop.2012.110684.

    Article  Google Scholar 

  27. 27.

    Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10(2):630–40. doi:10.1016/j.actbio.2013.10.016.

    Article  Google Scholar 

  28. 28.

    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30. doi:10.1002/adma.201305506.

    Article  Google Scholar 

  29. 29.

    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74. doi:10.1038/nmat3357.

    Article  Google Scholar 

  30. 30.

    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  Google Scholar 

  31. 31.

    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24. doi:10.1038/nmat1421.

    Article  Google Scholar 

  32. 32.

    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27. doi:10.1016/j.biomaterials.2004.11.057.

    Article  Google Scholar 

  33. 33.

    Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85. doi:10.1016/S0142-9612(01)00232-0.

    Article  Google Scholar 

  34. 34.

    Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater. 2010;6(7):2511–7. doi:10.1016/j.actbio.2009.07.018.

    Article  Google Scholar 

  35. 35.

    Dalton PD, Lleixa Calvet J, Mourran A, Klee D, Moller M. Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone). Biotechnol J. 2006;1(9):998–1006. doi:10.1002/biot.200600064.

    Article  Google Scholar 

  36. 36.

    Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23(47):5651–7. doi:10.1002/adma.201103482.

    Article  Google Scholar 

  37. 37.

    Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(epsilon-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5(2):025001. doi:10.1088/1758-5082/5/2/025001.

    Article  Google Scholar 

  38. 38.

    Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol. 2014;41(3):283–94. doi:10.1111/jcpe.12214.

    Article  Google Scholar 

  39. 39.

    Simon CG Jr, Stephens JS, Dorsey SM, Becker ML. Fabrication of combinatorial polymer scaffold libraries. Rev Sci Instrum. 2007;78(7):072207. doi:10.1063/1.2755761.

    Article  Google Scholar 

  40. 40.

    Zapata P, Su J, Garcia AJ, Meredith JC. Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Biomacromolecules. 2007;8(6):1907–17. doi:10.1021/Bm061134t.

    Article  Google Scholar 

  41. 41.

    Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, et al. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials. 2007;28(6):1048–60. doi:10.1016/j.biomaterials.2006.10.004.

    Article  Google Scholar 

  42. 42.

    Albrecht DR, Tsang VL, Sah RL, Bhatia SN. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip. 2005;5(1):111–8. doi:10.1039/B406953f.

    Article  Google Scholar 

  43. 43.

    Simon CG Jr, Eidelman N, Kennedy SB, Sehgal A, Khatri CA, Washburn NR. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D, L-lactic acid) blends. Biomaterials. 2005;26(34):6906–15. doi:10.1016/j.biomaterials.2005.04.050.

    Article  Google Scholar 

  44. 44.

    Kohn J. New approaches to biomaterials design. Nat Mater. 2004;3(11):745–7. doi:10.1038/Nmat1249.

    Article  Google Scholar 

  45. 45.

    Anderson DG, Levenberg S, Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol. 2004;22(7):863–6. doi:10.1038/nbt981.

    Article  Google Scholar 

  46. 46.

    Costa PF, Vaquette C, Baldwin J, Chhaya M, Gomes ME, Reis RL, et al. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication. 2014;6(3):035006. doi:10.1088/1758-5082/6/3/035006.

    Article  Google Scholar 

  47. 47.

    Higuera GA, Hendriks JA, van Dalum J, Wu L, Schotel R, Moreira-Teixeira L, et al. In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integr Biol. 2013;5(6):889–98. doi:10.1039/c3ib40023a.

    Article  Google Scholar 

  48. 48.

    Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amedee J, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2(1):014101. doi:10.1088/1758-5082/2/1/014101.

    Article  Google Scholar 

  49. 49.

    Xu HH, Burguera EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials. 2007;28(26):3786–96. doi:10.1016/j.biomaterials.2007.05.015.

    Article  Google Scholar 

  50. 50.

    Song G, Habibovic P, Bao C, Hu J, van Blitterswijk CA, Yuan H, et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials. 2013;34(9):2167–76. doi:10.1016/j.biomaterials.2012.12.010.

    Article  Google Scholar 

  51. 51.

    Liebschner MAK, Chun K, Behni B. Intra-Operative Patient Specific Functional Scaffold Fabrication. Orthopaedic Research Society Annual Meeting; February; San Francisco (USA); 2012.

Download references


Pedro F. Costa would like to thank the TUM University Foundation for his current Postdoctoral fellowship.

Author information



Corresponding author

Correspondence to Pedro F. Costa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costa, P.F. Biofabricated constructs as tissue models: a short review. J Mater Sci: Mater Med 26, 156 (2015).

Download citation


  • Human Umbilical Vein Endothelial Cell
  • Additive Manufacturing
  • Inkjet Printer
  • Selective Laser Sinter
  • Fuse Deposition Modelling