Skip to main content

Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices

Abstract

The development of highly efficient anti-bacterial wound dressings was carried out. For this purpose nanofibrous mats, hydrogels and films were synthesized from chitosan, poly(vinyl alcohol) and hydroxyapatite. The physical/chemical interactions of the synthesized materials were evaluated by FTIR. The morphology, structure; average diameter and pore size of the materials were investigated by scanning electron microscopy. The hydrogels showed a greater degree of swelling as compared to nanofibrous mats and films in phosphate buffer saline solution of pH 7.4. The in vitro drug release studies showed a burst release during the initial period of 4 h and then a sustained release profile was observed in the next upcoming 20 h. The lyophilized hydrogels showed a more slow release as compared to nanofibrous mats and films. Antibacterial potential of drug released solutions collected after 24 h of time interval was determined and all composite matrices showed good to moderate activity against Gram-positive and Gram-negative bacterial strains respectively. To determine the cytotoxicity, cell culture was performed for various cefixime loaded substrates by using neutral red dye uptake assay and all the matrices were found to be non-toxic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Song A, Rane AA, Christman KL. Antibacterial and cell-adhesive polypeptide and poly (ethylene glycol) hydrogel as a potential scaffold for wound healing. Acta Biomater. 2012;8:41–50.

    Article  Google Scholar 

  2. Lagana G, Anderson EH. Moisture dressings: the new standard in wound care. J Nurse Pract. 2010;6:366–70.

    Article  Google Scholar 

  3. Pal K, Banthia AK, Majumdar DK. Polyvinyl alcohol–glycine composite membranes: preparation, characterization, drug release and cytocompatibility studies. Biomed Mater. 2006;1:49.

    Article  Google Scholar 

  4. Yu H, Xu X, Chen X, Hao J, Jing X. Medicated wound dressings based on poly (vinyl alcohol)/poly (N-vinyl pyrrolidone)/chitosan hydrogels. J Appl Polym Sci. 2006;101:2453–63.

    Article  Google Scholar 

  5. Majno G. The healing hand: man and wound in the ancient world. Cambridge: Harvard University Press; 1991.

    Google Scholar 

  6. Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm. 2013;441:181–91.

    Article  Google Scholar 

  7. Fajardo AR, Lopes LC, Caleare AO, Britta EA, Nakamura CV, Rubira AF, et al. Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application. Mater Sci Eng C. 2013;33:588–95.

    Article  Google Scholar 

  8. Pawar H, Tetteh J, Boateng J. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B. 2013;102:102–10.

    Article  Google Scholar 

  9. Thu H-E, Zulfakar MH, Ng S-F. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm. 2012;434:375–83.

    Article  Google Scholar 

  10. De Cicco F, Reverchon E, Adami R, Auriemma G, Russo P, Calabrese EC, et al. In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying. Carbohydr Polym. 2014;101:1216–24.

    Article  Google Scholar 

  11. Dias A, Braga M, Seabra I, Ferreira P, Gil M, De Sousa H. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int J Pharm. 2011;408:9–19.

    Article  Google Scholar 

  12. Singh B, Pal L. Sterculia crosslinked PVA and PVA-poly (AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater. 2012;9:9–21.

    Article  Google Scholar 

  13. Wang T, Zhu X-K, Xue X-T, Wu D-Y. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym. 2012;88:75–83.

    Article  Google Scholar 

  14. Shalumon K, Anulekha K, Nair SV, Nair S, Chennazhi K, Jayakumar R. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol. 2011;49:247–54.

    Article  Google Scholar 

  15. Unnithan AR, Barakat NA, Tirupathi Pichiah P, Gnanasekaran G, Nirmala R, Cha Y-S, et al. Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym. 2012;90:1786–93.

    Article  Google Scholar 

  16. Yang Y, Xia T, Zhi W, Wei L, Weng J, Zhang C, et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials. 2011;32:4243–54.

    Article  Google Scholar 

  17. Zhao Y, Zhou Y, Wu X, Wang L, Xu L, Wei S. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers. Appl Surf Sci. 2012;258:8867–73.

    Article  Google Scholar 

  18. Kenawy E-R, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson DG, et al. Electrospinning of poly (ethylene-co-vinyl alcohol) fibers. Biomaterials. 2003;24:907–13.

    Article  Google Scholar 

  19. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B. 2003;67:675–9.

    Article  Google Scholar 

  20. Matsumoto H, Tanioka A. Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes. 2011;1:249–64.

    Article  Google Scholar 

  21. Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27:3115–24.

    Article  Google Scholar 

  22. Schneider A, Wang X, Kaplan D, Garlick J, Egles C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 2009;5:2570–8.

    Article  Google Scholar 

  23. Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys. 2000;87:4531–47.

    Article  Google Scholar 

  24. Haque MA, Kurokawa T, Gong JP. Super tough double network hydrogels and their application as biomaterials. Polymer. 2012;53:1805–22.

    Article  Google Scholar 

  25. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules. 2011;12:2653–9.

    Article  Google Scholar 

  26. Zhang H, Qadeer A, Chen W. In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan and oxidized dextran. Biomacromolecules. 2011;12:1428–37.

    Article  Google Scholar 

  27. Kao WJ. Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials. 1999;20:2213–21.

    Article  Google Scholar 

  28. Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev. 2003;55:1595–611.

    Article  Google Scholar 

  29. Cho Y-W, Han S-S, Ko S-W. PVA containing chito-oligosaccharide side chain. Polymer. 2000;41:2033–9.

    Article  Google Scholar 

  30. Kim SJ, Shin SR, Kim NG, Kim SI. Swelling behavior of semi-interpenetrating polymer network hydrogels based on chitosan and poly(acryl amide). J Macromol Sci A. 2005;42:1073–83.

    Article  Google Scholar 

  31. Liang S, Liu L, Huang Q, Yam KL. Preparation of single or double-network chitosan/poly (vinyl alcohol) gel films through selectively cross-linking method. Carbohydr Polym. 2009;77:718–24.

    Article  Google Scholar 

  32. Yang E, Qin X, Wang S. Electrospun crosslinked polyvinyl alcohol membrane. Mater Lett. 2008;62:3555–7.

    Article  Google Scholar 

  33. Chandy T, Sharma CP. Prostaglandin E1-immobilized poly (vinyl alcohol)-blended chitosan membranes: blood compatibility and permeability properties. J Appl Polym Sci. 1992;44:2145–56.

    Article  Google Scholar 

  34. Jegal J, Lee KH. Nanofiltration membranes based on poly (vinyl alcohol) and ionic polymers. J Appl Polym Sci. 1999;72:1755–62.

    Article  Google Scholar 

  35. Sarvestani AS, Jabbari E. Modeling and experimental investigation of rheological properties of injectable poly (lactide ethylene oxide fumarate)/hydroxyapatite nanocomposites. Biomacromolecules. 2006;7:1573–80.

    Article  Google Scholar 

  36. Sugawara A, Yamane S, Akiyoshi K. Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromol Rapid Commun. 2006;27:441–6.

    Article  Google Scholar 

  37. Sung Y-M, Shin Y-K, Ryu J-J. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications. Nanotechnology. 2007;18:065602.

    Article  Google Scholar 

  38. Gomez-Vega J, Saiz E, Tomsia A, Marshall G, Marshall S. Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing. Biomaterials. 2000;21:105–11.

    Article  Google Scholar 

  39. Rizzi SC, Heath D, Coombes A, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res. 2001;55:475–86.

    Article  Google Scholar 

  40. Lin HR, Yeh YJ. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B. 2004;71:52–65.

    Article  Google Scholar 

  41. Queiroz A, Santos JD, Monteiro F. Adsorption isotherm of sodium ampicillin onto dense and porous hydroxyapatite. Key Eng Mater. 2005;284:387–90.

    Article  Google Scholar 

  42. Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26:2677–84.

    Article  Google Scholar 

  43. Santos JD, Monteiro F, Queiroz A. Porous HA scaffolds for drug releasing. Key Eng Mater. 2005;284:407–10.

    Google Scholar 

  44. Arshad HM, Mohiuddin OA, Azmi MB. Comparative in vitro antibacterial analysis of different brands of cefixime against clinical isolates of Staphylococcus aureus and Escherichia coli. J Appl Pharm Sci. 2012;2:109–13.

    Google Scholar 

  45. Bergeron MG, Turcotte A. Penetration of cefixime into fibrin clots and in vivo efficacy against Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Antimicrob Agents Chemother. 1986;30:913–6.

    Article  Google Scholar 

  46. Knapp CC, Sierra-Madero J, Washington JA. Antibacterial activities of cefpodoxime, cefixime, and ceftriaxone. Antimicrob Agents Chemother. 1988;32:1896–8.

    Article  Google Scholar 

  47. Sweetman SC. Martindale: the complete drug reference. 35th ed. London: Pharmaceutical Press; 2007.

    Google Scholar 

  48. McMillan A, Young H. The treatment of pharyngeal gonorrhoea with a single oral dose of cefixime. Int J STD AIDS. 2007;18:253–4.

    Article  Google Scholar 

  49. Huang M, Zhao X-L. Pharmacokinetics and bioavailability of oral cefiximein healthy adult volunteers. Chin Pharmacol Bull. 1994:01.

  50. Murtaza G, Ahmad M, Khan SA, Hussain I. Evaluation of cefixime-loaded chitosan microspheres: analysis of dissolution data using DDSolver. Dissolut Technol. 2012;19:13–9.

    Article  Google Scholar 

  51. Reddy AT, Kiran JV, Duraival S, Pragathi Kumar B. Formulation and in-vitro evaluation of cefixime trihydrate sustained release matrix tablets. Int J Curr Pharm Rev Res. 2013;3:110–29.

    Google Scholar 

  52. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125–31.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Higher Education Commission and Ministry of Science and Technology Pakistan for financial support. We would like to thank Mohsin at UHS for his help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahzad, S., Yar, M., Siddiqi, S.A. et al. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices. J Mater Sci: Mater Med 26, 136 (2015). https://doi.org/10.1007/s10856-015-5462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5462-y

Keywords

  • Chitosan
  • Drug Release
  • Cefixime
  • Composite Matrice
  • Cast Film